Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 95
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Sütterlin
2
78 kgJungels
3
70 kgZepuntke
4
76 kgFolsach
6
81 kgAdams
9
66 kgKirsch
10
78 kgEnger
21
69 kgSkjerping
22
71 kgZabel
23
81 kgWolf
24
85 kgGalta
26
78 kgBeyer
28
75 kgBystrøm
29
73 kgPeelaers
38
75 kgMager
42
60 kgHoelgaard
45
77 kgDegreve
52
72 kgWalscheid
61
90 kgMagnusson
70
71 kgKnaup
76
61 kgBiedermann
79
67 kg
2
78 kgJungels
3
70 kgZepuntke
4
76 kgFolsach
6
81 kgAdams
9
66 kgKirsch
10
78 kgEnger
21
69 kgSkjerping
22
71 kgZabel
23
81 kgWolf
24
85 kgGalta
26
78 kgBeyer
28
75 kgBystrøm
29
73 kgPeelaers
38
75 kgMager
42
60 kgHoelgaard
45
77 kgDegreve
52
72 kgWalscheid
61
90 kgMagnusson
70
71 kgKnaup
76
61 kgBiedermann
79
67 kg
Weight (KG) →
Result →
90
60
2
79
# | Rider | Weight (KG) |
---|---|---|
2 | SÜTTERLIN Jasha | 78 |
3 | JUNGELS Bob | 70 |
4 | ZEPUNTKE Ruben | 76 |
6 | FOLSACH Casper | 81 |
9 | ADAMS Jens | 66 |
10 | KIRSCH Alex | 78 |
21 | ENGER Sondre Holst | 69 |
22 | SKJERPING Kristoffer | 71 |
23 | ZABEL Rick | 81 |
24 | WOLF Justin | 85 |
26 | GALTA Fredrik Strand | 78 |
28 | BEYER Maximilian | 75 |
29 | BYSTRØM Sven Erik | 73 |
38 | PEELAERS Jeff | 75 |
42 | MAGER Christian | 60 |
45 | HOELGAARD Daniel | 77 |
52 | DEGREVE Martijn | 72 |
61 | WALSCHEID Max | 90 |
70 | MAGNUSSON Kim | 71 |
76 | KNAUP Tobias | 61 |
79 | BIEDERMANN Daniel | 67 |