Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bystrøm
2
73 kgAdams
3
66 kgSütterlin
4
78 kgZabel
7
81 kgPeelaers
10
75 kgBiedermann
15
67 kgEnger
16
69 kgSkjerping
19
71 kgWalscheid
27
90 kgZepuntke
32
76 kgMager
45
60 kgBeyer
46
75 kgFolsach
49
81 kgJungels
52
70 kgWolf
53
85 kgKnaup
71
61 kgHoelgaard
74
77 kgKirsch
75
78 kgDegreve
87
72 kgMagnusson
89
71 kg
2
73 kgAdams
3
66 kgSütterlin
4
78 kgZabel
7
81 kgPeelaers
10
75 kgBiedermann
15
67 kgEnger
16
69 kgSkjerping
19
71 kgWalscheid
27
90 kgZepuntke
32
76 kgMager
45
60 kgBeyer
46
75 kgFolsach
49
81 kgJungels
52
70 kgWolf
53
85 kgKnaup
71
61 kgHoelgaard
74
77 kgKirsch
75
78 kgDegreve
87
72 kgMagnusson
89
71 kg
Weight (KG) →
Result →
90
60
2
89
# | Rider | Weight (KG) |
---|---|---|
2 | BYSTRØM Sven Erik | 73 |
3 | ADAMS Jens | 66 |
4 | SÜTTERLIN Jasha | 78 |
7 | ZABEL Rick | 81 |
10 | PEELAERS Jeff | 75 |
15 | BIEDERMANN Daniel | 67 |
16 | ENGER Sondre Holst | 69 |
19 | SKJERPING Kristoffer | 71 |
27 | WALSCHEID Max | 90 |
32 | ZEPUNTKE Ruben | 76 |
45 | MAGER Christian | 60 |
46 | BEYER Maximilian | 75 |
49 | FOLSACH Casper | 81 |
52 | JUNGELS Bob | 70 |
53 | WOLF Justin | 85 |
71 | KNAUP Tobias | 61 |
74 | HOELGAARD Daniel | 77 |
75 | KIRSCH Alex | 78 |
87 | DEGREVE Martijn | 72 |
89 | MAGNUSSON Kim | 71 |