Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Jungels
3
70 kgSütterlin
4
78 kgSkjerping
5
71 kgMager
8
60 kgAdams
11
66 kgEnger
13
69 kgFolsach
16
81 kgWalscheid
17
90 kgKirsch
19
78 kgBystrøm
24
73 kgZabel
27
81 kgBiedermann
28
67 kgZepuntke
36
76 kgMagnusson
40
71 kgHoelgaard
43
77 kgBeyer
55
75 kgWolf
57
85 kgPeelaers
58
75 kgKnaup
76
61 kgDegreve
81
72 kg
3
70 kgSütterlin
4
78 kgSkjerping
5
71 kgMager
8
60 kgAdams
11
66 kgEnger
13
69 kgFolsach
16
81 kgWalscheid
17
90 kgKirsch
19
78 kgBystrøm
24
73 kgZabel
27
81 kgBiedermann
28
67 kgZepuntke
36
76 kgMagnusson
40
71 kgHoelgaard
43
77 kgBeyer
55
75 kgWolf
57
85 kgPeelaers
58
75 kgKnaup
76
61 kgDegreve
81
72 kg
Weight (KG) →
Result →
90
60
3
81
# | Rider | Weight (KG) |
---|---|---|
3 | JUNGELS Bob | 70 |
4 | SÜTTERLIN Jasha | 78 |
5 | SKJERPING Kristoffer | 71 |
8 | MAGER Christian | 60 |
11 | ADAMS Jens | 66 |
13 | ENGER Sondre Holst | 69 |
16 | FOLSACH Casper | 81 |
17 | WALSCHEID Max | 90 |
19 | KIRSCH Alex | 78 |
24 | BYSTRØM Sven Erik | 73 |
27 | ZABEL Rick | 81 |
28 | BIEDERMANN Daniel | 67 |
36 | ZEPUNTKE Ruben | 76 |
40 | MAGNUSSON Kim | 71 |
43 | HOELGAARD Daniel | 77 |
55 | BEYER Maximilian | 75 |
57 | WOLF Justin | 85 |
58 | PEELAERS Jeff | 75 |
76 | KNAUP Tobias | 61 |
81 | DEGREVE Martijn | 72 |