Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Mühlberger
1
64 kgBajc
2
65 kgGroßschartner
4
64 kgde la Parte
5
64 kgBaldo
6
73 kgKusztor
8
61 kgČanecký
9
72 kgRabitsch
12
69 kgPöll
14
60 kgKvasina
15
72 kgSchönberger
16
64 kgBrkic
17
58 kgLehner
20
63 kgHrinkow
27
61 kgSchoffmann
29
67 kgBenetseder
31
65 kgPöstlberger
34
70 kg
1
64 kgBajc
2
65 kgGroßschartner
4
64 kgde la Parte
5
64 kgBaldo
6
73 kgKusztor
8
61 kgČanecký
9
72 kgRabitsch
12
69 kgPöll
14
60 kgKvasina
15
72 kgSchönberger
16
64 kgBrkic
17
58 kgLehner
20
63 kgHrinkow
27
61 kgSchoffmann
29
67 kgBenetseder
31
65 kgPöstlberger
34
70 kg
Weight (KG) →
Result →
73
58
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | MÜHLBERGER Gregor | 64 |
2 | BAJC Andi | 65 |
4 | GROßSCHARTNER Felix | 64 |
5 | DE LA PARTE Víctor | 64 |
6 | BALDO Nicolas | 73 |
8 | KUSZTOR Péter | 61 |
9 | ČANECKÝ Marek | 72 |
12 | RABITSCH Stephan | 69 |
14 | PÖLL Stefan | 60 |
15 | KVASINA Matija | 72 |
16 | SCHÖNBERGER Sebastian | 64 |
17 | BRKIC Benjamin | 58 |
20 | LEHNER Daniel | 63 |
27 | HRINKOW Dominik | 61 |
29 | SCHOFFMANN Martin | 67 |
31 | BENETSEDER Josef | 65 |
34 | PÖSTLBERGER Lukas | 70 |