Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 143
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Rossner
2
64 kgKupfernagel
3
68 kgPaulitz-Müller
4
57 kgSchleicher
8
58 kgHohlfeld
11
57 kgLjungskog
13
57 kgDahle
16
64 kgArndt
17
59 kgCarrigan
19
60 kgLindberg
27
63 kgValen
28
61 kgMatusiak
40
58 kgMarunde
44
58 kgPučinskaitė
52
54 kgAlexander
53
51 kgBrzeźna
63
56 kgVilajosana
70
57 kgSpitz
76
60 kgTeutenberg
81
64 kg
2
64 kgKupfernagel
3
68 kgPaulitz-Müller
4
57 kgSchleicher
8
58 kgHohlfeld
11
57 kgLjungskog
13
57 kgDahle
16
64 kgArndt
17
59 kgCarrigan
19
60 kgLindberg
27
63 kgValen
28
61 kgMatusiak
40
58 kgMarunde
44
58 kgPučinskaitė
52
54 kgAlexander
53
51 kgBrzeźna
63
56 kgVilajosana
70
57 kgSpitz
76
60 kgTeutenberg
81
64 kg
Weight (KG) →
Result →
68
51
2
81
# | Rider | Weight (KG) |
---|---|---|
2 | ROSSNER Petra | 64 |
3 | KUPFERNAGEL Hanka | 68 |
4 | PAULITZ-MÜLLER Viola | 57 |
8 | SCHLEICHER Regina | 58 |
11 | HOHLFELD Vera | 57 |
13 | LJUNGSKOG Susanne | 57 |
16 | DAHLE Gunn-Rita | 64 |
17 | ARNDT Judith | 59 |
19 | CARRIGAN Sara | 60 |
27 | LINDBERG Madeleine | 63 |
28 | VALEN Monica | 61 |
40 | MATUSIAK Bogumiła | 58 |
44 | MARUNDE Regina | 58 |
52 | PUČINSKAITĖ Edita | 54 |
53 | ALEXANDER Caroline | 51 |
63 | BRZEŹNA Paulina | 56 |
70 | VILAJOSANA Marta | 57 |
76 | SPITZ Sabine | 60 |
81 | TEUTENBERG Ina-Yoko | 64 |