Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kupfernagel
3
68 kgPučinskaitė
5
54 kgHohlfeld
8
57 kgArndt
11
59 kgAlexander
12
51 kgTeutenberg
13
64 kgLindberg
14
63 kgDahle
16
64 kgLjungskog
21
57 kgMarunde
32
58 kgCarrigan
35
60 kgRossner
39
64 kgMatusiak
42
58 kgValen
45
61 kgSchleicher
52
58 kgVilajosana
53
57 kgSpitz
64
60 kg
3
68 kgPučinskaitė
5
54 kgHohlfeld
8
57 kgArndt
11
59 kgAlexander
12
51 kgTeutenberg
13
64 kgLindberg
14
63 kgDahle
16
64 kgLjungskog
21
57 kgMarunde
32
58 kgCarrigan
35
60 kgRossner
39
64 kgMatusiak
42
58 kgValen
45
61 kgSchleicher
52
58 kgVilajosana
53
57 kgSpitz
64
60 kg
Weight (KG) →
Result →
68
51
3
64
# | Rider | Weight (KG) |
---|---|---|
3 | KUPFERNAGEL Hanka | 68 |
5 | PUČINSKAITĖ Edita | 54 |
8 | HOHLFELD Vera | 57 |
11 | ARNDT Judith | 59 |
12 | ALEXANDER Caroline | 51 |
13 | TEUTENBERG Ina-Yoko | 64 |
14 | LINDBERG Madeleine | 63 |
16 | DAHLE Gunn-Rita | 64 |
21 | LJUNGSKOG Susanne | 57 |
32 | MARUNDE Regina | 58 |
35 | CARRIGAN Sara | 60 |
39 | ROSSNER Petra | 64 |
42 | MATUSIAK Bogumiła | 58 |
45 | VALEN Monica | 61 |
52 | SCHLEICHER Regina | 58 |
53 | VILAJOSANA Marta | 57 |
64 | SPITZ Sabine | 60 |