Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Zabirova
1
65 kgMelchers
3
59 kgArndt
4
59 kgLjungskog
6
57 kgVžesniauskaitė
8
57 kgCappellotto
12
60 kgMatusiak
15
58 kgSpitz
17
60 kgLindberg
19
63 kgMartisova
21
64 kgDahle
23
64 kgSundstedt
30
52 kgvan Rooy-Vink
31
57 kgHohlfeld
36
57 kgFernandes Silva
39
52 kgDorland
40
60 kgValen
41
61 kgGunnewijk
44
67 kgBrzeźna
51
56 kg
1
65 kgMelchers
3
59 kgArndt
4
59 kgLjungskog
6
57 kgVžesniauskaitė
8
57 kgCappellotto
12
60 kgMatusiak
15
58 kgSpitz
17
60 kgLindberg
19
63 kgMartisova
21
64 kgDahle
23
64 kgSundstedt
30
52 kgvan Rooy-Vink
31
57 kgHohlfeld
36
57 kgFernandes Silva
39
52 kgDorland
40
60 kgValen
41
61 kgGunnewijk
44
67 kgBrzeźna
51
56 kg
Weight (KG) →
Result →
67
52
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | ZABIROVA Zulfiya | 65 |
3 | MELCHERS Mirjam | 59 |
4 | ARNDT Judith | 59 |
6 | LJUNGSKOG Susanne | 57 |
8 | VŽESNIAUSKAITĖ Modesta | 57 |
12 | CAPPELLOTTO Alessandra | 60 |
15 | MATUSIAK Bogumiła | 58 |
17 | SPITZ Sabine | 60 |
19 | LINDBERG Madeleine | 63 |
21 | MARTISOVA Julia | 64 |
23 | DAHLE Gunn-Rita | 64 |
30 | SUNDSTEDT Pia | 52 |
31 | VAN ROOY-VINK Elsbeth | 57 |
36 | HOHLFELD Vera | 57 |
39 | FERNANDES SILVA Janildes | 52 |
40 | DORLAND Corine | 60 |
41 | VALEN Monica | 61 |
44 | GUNNEWIJK Loes | 67 |
51 | BRZEŹNA Paulina | 56 |