Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ljungskog
2
57 kgCarrigan
3
60 kgArndt
4
59 kgBeltman
8
68 kgArmstrong
9
58 kgZabelinskaya
14
52 kgMelchers
15
59 kgValen
16
62 kgSoeder
17
52 kgVžesniauskaitė
20
57 kgMatusiak
21
58 kgMartisova
26
64 kgCorneo
27
54 kgKupfernagel
45
68 kgMarunde
47
58 kgLindberg
48
63 kgSandig
51
62 kgLeumann
63
53 kgBrzeźna
68
56 kg
2
57 kgCarrigan
3
60 kgArndt
4
59 kgBeltman
8
68 kgArmstrong
9
58 kgZabelinskaya
14
52 kgMelchers
15
59 kgValen
16
62 kgSoeder
17
52 kgVžesniauskaitė
20
57 kgMatusiak
21
58 kgMartisova
26
64 kgCorneo
27
54 kgKupfernagel
45
68 kgMarunde
47
58 kgLindberg
48
63 kgSandig
51
62 kgLeumann
63
53 kgBrzeźna
68
56 kg
Weight (KG) →
Result →
68
52
2
68
# | Rider | Weight (KG) |
---|---|---|
2 | LJUNGSKOG Susanne | 57 |
3 | CARRIGAN Sara | 60 |
4 | ARNDT Judith | 59 |
8 | BELTMAN Chantal | 68 |
9 | ARMSTRONG Kristin | 58 |
14 | ZABELINSKAYA Olga | 52 |
15 | MELCHERS Mirjam | 59 |
16 | VALEN Anita | 62 |
17 | SOEDER Christiane | 52 |
20 | VŽESNIAUSKAITĖ Modesta | 57 |
21 | MATUSIAK Bogumiła | 58 |
26 | MARTISOVA Julia | 64 |
27 | CORNEO Sigrid | 54 |
45 | KUPFERNAGEL Hanka | 68 |
47 | MARUNDE Regina | 58 |
48 | LINDBERG Madeleine | 63 |
51 | SANDIG Madeleine | 62 |
63 | LEUMANN Katrin | 53 |
68 | BRZEŹNA Paulina | 56 |