Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Gilmore
2
56 kgWood
6
56 kgCarrigan
7
60 kgArndt
8
59 kgSchleicher
10
58 kgMelchers
12
59 kgLjungskog
13
57 kgVillumsen
16
59 kgVžesniauskaitė
18
57 kgPučinskaitė
19
54 kgKiesanowski
20
56 kgValen
23
62 kgDoppmann
29
55 kgSoeder
30
52 kgGrassi
37
56 kgDahle
38
64 kgSandig
43
62 kg
2
56 kgWood
6
56 kgCarrigan
7
60 kgArndt
8
59 kgSchleicher
10
58 kgMelchers
12
59 kgLjungskog
13
57 kgVillumsen
16
59 kgVžesniauskaitė
18
57 kgPučinskaitė
19
54 kgKiesanowski
20
56 kgValen
23
62 kgDoppmann
29
55 kgSoeder
30
52 kgGrassi
37
56 kgDahle
38
64 kgSandig
43
62 kg
Weight (KG) →
Result →
64
52
2
43
# | Rider | Weight (KG) |
---|---|---|
2 | GILMORE Rochelle | 56 |
6 | WOOD Oenone | 56 |
7 | CARRIGAN Sara | 60 |
8 | ARNDT Judith | 59 |
10 | SCHLEICHER Regina | 58 |
12 | MELCHERS Mirjam | 59 |
13 | LJUNGSKOG Susanne | 57 |
16 | VILLUMSEN Linda | 59 |
18 | VŽESNIAUSKAITĖ Modesta | 57 |
19 | PUČINSKAITĖ Edita | 54 |
20 | KIESANOWSKI Joanne | 56 |
23 | VALEN Anita | 62 |
29 | DOPPMANN Priska | 55 |
30 | SOEDER Christiane | 52 |
37 | GRASSI Giuseppina | 56 |
38 | DAHLE Gunn-Rita | 64 |
43 | SANDIG Madeleine | 62 |