Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 51
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Wood
2
56 kgGilmore
3
56 kgValen
5
62 kgCantele
6
58 kgSoeder
7
52 kgKiesanowski
8
56 kgArndt
9
59 kgLjungskog
11
57 kgPučinskaitė
14
54 kgPitel
17
52 kgDoppmann
18
55 kgKupfernagel
22
68 kgHohl
27
55 kgMeng
33
65 kgBecker
36
64 kgGuderzo
37
54 kgMin
40
56 kgSpratt
46
55 kgCarrigan
55
60 kgSchleicher
57
58 kgSlappendel
58
67 kgBates
65
69 kgLeumann
66
53 kg
2
56 kgGilmore
3
56 kgValen
5
62 kgCantele
6
58 kgSoeder
7
52 kgKiesanowski
8
56 kgArndt
9
59 kgLjungskog
11
57 kgPučinskaitė
14
54 kgPitel
17
52 kgDoppmann
18
55 kgKupfernagel
22
68 kgHohl
27
55 kgMeng
33
65 kgBecker
36
64 kgGuderzo
37
54 kgMin
40
56 kgSpratt
46
55 kgCarrigan
55
60 kgSchleicher
57
58 kgSlappendel
58
67 kgBates
65
69 kgLeumann
66
53 kg
Weight (KG) →
Result →
69
52
2
66
# | Rider | Weight (KG) |
---|---|---|
2 | WOOD Oenone | 56 |
3 | GILMORE Rochelle | 56 |
5 | VALEN Anita | 62 |
6 | CANTELE Noemi | 58 |
7 | SOEDER Christiane | 52 |
8 | KIESANOWSKI Joanne | 56 |
9 | ARNDT Judith | 59 |
11 | LJUNGSKOG Susanne | 57 |
14 | PUČINSKAITĖ Edita | 54 |
17 | PITEL Edwige | 52 |
18 | DOPPMANN Priska | 55 |
22 | KUPFERNAGEL Hanka | 68 |
27 | HOHL Jennifer | 55 |
33 | MENG Lang | 65 |
36 | BECKER Charlotte | 64 |
37 | GUDERZO Tatiana | 54 |
40 | MIN Gao | 56 |
46 | SPRATT Amanda | 55 |
55 | CARRIGAN Sara | 60 |
57 | SCHLEICHER Regina | 58 |
58 | SLAPPENDEL Iris | 67 |
65 | BATES Katherine | 69 |
66 | LEUMANN Katrin | 53 |