Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.4 * weight - 105
This means that on average for every extra kilogram weight a rider loses 2.4 positions in the result.
Arndt
1
59 kgCantele
2
58 kgLjungskog
5
57 kgWood
6
56 kgPitel
7
52 kgPučinskaitė
10
54 kgGuderzo
14
54 kgSoeder
15
52 kgHohl
22
55 kgMeng
23
65 kgGilmore
24
56 kgDoppmann
42
55 kgValen
43
62 kgSchleicher
48
58 kgKiesanowski
52
56 kgSlappendel
53
67 kgMin
57
56 kgSpratt
61
55 kgBecker
71
64 kgCarrigan
74
60 kg
1
59 kgCantele
2
58 kgLjungskog
5
57 kgWood
6
56 kgPitel
7
52 kgPučinskaitė
10
54 kgGuderzo
14
54 kgSoeder
15
52 kgHohl
22
55 kgMeng
23
65 kgGilmore
24
56 kgDoppmann
42
55 kgValen
43
62 kgSchleicher
48
58 kgKiesanowski
52
56 kgSlappendel
53
67 kgMin
57
56 kgSpratt
61
55 kgBecker
71
64 kgCarrigan
74
60 kg
Weight (KG) →
Result →
67
52
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | ARNDT Judith | 59 |
2 | CANTELE Noemi | 58 |
5 | LJUNGSKOG Susanne | 57 |
6 | WOOD Oenone | 56 |
7 | PITEL Edwige | 52 |
10 | PUČINSKAITĖ Edita | 54 |
14 | GUDERZO Tatiana | 54 |
15 | SOEDER Christiane | 52 |
22 | HOHL Jennifer | 55 |
23 | MENG Lang | 65 |
24 | GILMORE Rochelle | 56 |
42 | DOPPMANN Priska | 55 |
43 | VALEN Anita | 62 |
48 | SCHLEICHER Regina | 58 |
52 | KIESANOWSKI Joanne | 56 |
53 | SLAPPENDEL Iris | 67 |
57 | MIN Gao | 56 |
61 | SPRATT Amanda | 55 |
71 | BECKER Charlotte | 64 |
74 | CARRIGAN Sara | 60 |