Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Arndt
2
59 kgCantele
3
58 kgValen
7
62 kgLjungskog
8
57 kgKiesanowski
10
56 kgWood
11
56 kgMeng
13
65 kgCarrigan
15
60 kgSpratt
21
55 kgPitel
23
52 kgDoppmann
25
55 kgGilmore
27
56 kgSoeder
32
52 kgSchleicher
34
58 kgBecker
35
64 kgHohl
41
55 kgSlappendel
51
67 kgGuderzo
55
54 kgMin
63
56 kg
2
59 kgCantele
3
58 kgValen
7
62 kgLjungskog
8
57 kgKiesanowski
10
56 kgWood
11
56 kgMeng
13
65 kgCarrigan
15
60 kgSpratt
21
55 kgPitel
23
52 kgDoppmann
25
55 kgGilmore
27
56 kgSoeder
32
52 kgSchleicher
34
58 kgBecker
35
64 kgHohl
41
55 kgSlappendel
51
67 kgGuderzo
55
54 kgMin
63
56 kg
Weight (KG) →
Result →
67
52
2
63
# | Rider | Weight (KG) |
---|---|---|
2 | ARNDT Judith | 59 |
3 | CANTELE Noemi | 58 |
7 | VALEN Anita | 62 |
8 | LJUNGSKOG Susanne | 57 |
10 | KIESANOWSKI Joanne | 56 |
11 | WOOD Oenone | 56 |
13 | MENG Lang | 65 |
15 | CARRIGAN Sara | 60 |
21 | SPRATT Amanda | 55 |
23 | PITEL Edwige | 52 |
25 | DOPPMANN Priska | 55 |
27 | GILMORE Rochelle | 56 |
32 | SOEDER Christiane | 52 |
34 | SCHLEICHER Regina | 58 |
35 | BECKER Charlotte | 64 |
41 | HOHL Jennifer | 55 |
51 | SLAPPENDEL Iris | 67 |
55 | GUDERZO Tatiana | 54 |
63 | MIN Gao | 56 |