Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Arndt
1
59 kgTreier
3
62 kgSoeder
5
52 kgJohansson
6
58 kgCantele
7
58 kgDoppmann
8
55 kgKupfernagel
10
68 kgThornburn
18
56 kgHobson
19
55 kgGunnewijk
21
67 kgWrubleski
23
55 kgLichtenberg
26
52 kgBeveridge
29
55 kgValen
35
62 kgVžesniauskaitė
41
57 kgDe Vocht
44
61 kgBecker
45
64 kgKasper
55
59 kgBrennauer
57
63 kgCanuel
61
51 kg
1
59 kgTreier
3
62 kgSoeder
5
52 kgJohansson
6
58 kgCantele
7
58 kgDoppmann
8
55 kgKupfernagel
10
68 kgThornburn
18
56 kgHobson
19
55 kgGunnewijk
21
67 kgWrubleski
23
55 kgLichtenberg
26
52 kgBeveridge
29
55 kgValen
35
62 kgVžesniauskaitė
41
57 kgDe Vocht
44
61 kgBecker
45
64 kgKasper
55
59 kgBrennauer
57
63 kgCanuel
61
51 kg
Weight (KG) →
Result →
68
51
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | ARNDT Judith | 59 |
3 | TREIER Grete | 62 |
5 | SOEDER Christiane | 52 |
6 | JOHANSSON Emma | 58 |
7 | CANTELE Noemi | 58 |
8 | DOPPMANN Priska | 55 |
10 | KUPFERNAGEL Hanka | 68 |
18 | THORNBURN Christine | 56 |
19 | HOBSON Leigh | 55 |
21 | GUNNEWIJK Loes | 67 |
23 | WRUBLESKI Alex | 55 |
26 | LICHTENBERG Claudia | 52 |
29 | BEVERIDGE Julie | 55 |
35 | VALEN Anita | 62 |
41 | VŽESNIAUSKAITĖ Modesta | 57 |
44 | DE VOCHT Liesbet | 61 |
45 | BECKER Charlotte | 64 |
55 | KASPER Romy | 59 |
57 | BRENNAUER Lisa | 63 |
61 | CANUEL Karol-Ann | 51 |