Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Arndt
2
59 kgKupfernagel
6
68 kgCantele
7
58 kgValen
8
62 kgHobson
11
55 kgJohansson
13
58 kgTreier
18
62 kgWrubleski
20
55 kgSoeder
23
52 kgLichtenberg
27
52 kgDoppmann
29
55 kgGunnewijk
31
67 kgThornburn
33
56 kgBeveridge
35
55 kgVžesniauskaitė
38
57 kgDe Vocht
48
61 kgBecker
49
64 kgBrennauer
58
63 kgCanuel
59
51 kgKasper
60
59 kg
2
59 kgKupfernagel
6
68 kgCantele
7
58 kgValen
8
62 kgHobson
11
55 kgJohansson
13
58 kgTreier
18
62 kgWrubleski
20
55 kgSoeder
23
52 kgLichtenberg
27
52 kgDoppmann
29
55 kgGunnewijk
31
67 kgThornburn
33
56 kgBeveridge
35
55 kgVžesniauskaitė
38
57 kgDe Vocht
48
61 kgBecker
49
64 kgBrennauer
58
63 kgCanuel
59
51 kgKasper
60
59 kg
Weight (KG) →
Result →
68
51
2
60
# | Rider | Weight (KG) |
---|---|---|
2 | ARNDT Judith | 59 |
6 | KUPFERNAGEL Hanka | 68 |
7 | CANTELE Noemi | 58 |
8 | VALEN Anita | 62 |
11 | HOBSON Leigh | 55 |
13 | JOHANSSON Emma | 58 |
18 | TREIER Grete | 62 |
20 | WRUBLESKI Alex | 55 |
23 | SOEDER Christiane | 52 |
27 | LICHTENBERG Claudia | 52 |
29 | DOPPMANN Priska | 55 |
31 | GUNNEWIJK Loes | 67 |
33 | THORNBURN Christine | 56 |
35 | BEVERIDGE Julie | 55 |
38 | VŽESNIAUSKAITĖ Modesta | 57 |
48 | DE VOCHT Liesbet | 61 |
49 | BECKER Charlotte | 64 |
58 | BRENNAUER Lisa | 63 |
59 | CANUEL Karol-Ann | 51 |
60 | KASPER Romy | 59 |