Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Becker
1
64 kgVos
3
58 kgAndruk
6
56 kgJohansson
7
58 kgVillumsen
9
59 kgCooke
11
58 kgLechner
13
52 kgLjungskog
20
57 kgSoeder
24
52 kgAntoshina
28
55 kgAbbott
30
52 kgMelchers
32
59 kgRowe
33
65 kgvan Dijk
35
71 kgSlappendel
38
67 kgStander
44
57 kgVilajosana
48
57 kgVžesniauskaitė
53
57 kgSandig
54
62 kgCantele
56
58 kgvan der Breggen
68
56 kg
1
64 kgVos
3
58 kgAndruk
6
56 kgJohansson
7
58 kgVillumsen
9
59 kgCooke
11
58 kgLechner
13
52 kgLjungskog
20
57 kgSoeder
24
52 kgAntoshina
28
55 kgAbbott
30
52 kgMelchers
32
59 kgRowe
33
65 kgvan Dijk
35
71 kgSlappendel
38
67 kgStander
44
57 kgVilajosana
48
57 kgVžesniauskaitė
53
57 kgSandig
54
62 kgCantele
56
58 kgvan der Breggen
68
56 kg
Weight (KG) →
Result →
71
52
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | BECKER Charlotte | 64 |
3 | VOS Marianne | 58 |
6 | ANDRUK Alona | 56 |
7 | JOHANSSON Emma | 58 |
9 | VILLUMSEN Linda | 59 |
11 | COOKE Nicole | 58 |
13 | LECHNER Eva | 52 |
20 | LJUNGSKOG Susanne | 57 |
24 | SOEDER Christiane | 52 |
28 | ANTOSHINA Tatiana | 55 |
30 | ABBOTT Mara | 52 |
32 | MELCHERS Mirjam | 59 |
33 | ROWE Danielle | 65 |
35 | VAN DIJK Ellen | 71 |
38 | SLAPPENDEL Iris | 67 |
44 | STANDER Marissa | 57 |
48 | VILAJOSANA Marta | 57 |
53 | VŽESNIAUSKAITĖ Modesta | 57 |
54 | SANDIG Madeleine | 62 |
56 | CANTELE Noemi | 58 |
68 | VAN DER BREGGEN Anna | 56 |