Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 25
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Soeder
1
52 kgVos
3
58 kgLjungskog
4
57 kgVillumsen
5
59 kgAntoshina
6
55 kgMelchers
10
59 kgJohansson
11
58 kgCantele
13
58 kgLechner
21
52 kgAndruk
22
56 kgSlappendel
25
67 kgVilajosana
27
57 kgvan Dijk
29
71 kgAbbott
31
52 kgBecker
36
64 kgVžesniauskaitė
45
57 kgSandig
49
62 kgRowe
50
65 kgvan der Breggen
64
56 kgStander
68
57 kg
1
52 kgVos
3
58 kgLjungskog
4
57 kgVillumsen
5
59 kgAntoshina
6
55 kgMelchers
10
59 kgJohansson
11
58 kgCantele
13
58 kgLechner
21
52 kgAndruk
22
56 kgSlappendel
25
67 kgVilajosana
27
57 kgvan Dijk
29
71 kgAbbott
31
52 kgBecker
36
64 kgVžesniauskaitė
45
57 kgSandig
49
62 kgRowe
50
65 kgvan der Breggen
64
56 kgStander
68
57 kg
Weight (KG) →
Result →
71
52
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | SOEDER Christiane | 52 |
3 | VOS Marianne | 58 |
4 | LJUNGSKOG Susanne | 57 |
5 | VILLUMSEN Linda | 59 |
6 | ANTOSHINA Tatiana | 55 |
10 | MELCHERS Mirjam | 59 |
11 | JOHANSSON Emma | 58 |
13 | CANTELE Noemi | 58 |
21 | LECHNER Eva | 52 |
22 | ANDRUK Alona | 56 |
25 | SLAPPENDEL Iris | 67 |
27 | VILAJOSANA Marta | 57 |
29 | VAN DIJK Ellen | 71 |
31 | ABBOTT Mara | 52 |
36 | BECKER Charlotte | 64 |
45 | VŽESNIAUSKAITĖ Modesta | 57 |
49 | SANDIG Madeleine | 62 |
50 | ROWE Danielle | 65 |
64 | VAN DER BREGGEN Anna | 56 |
68 | STANDER Marissa | 57 |