Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Pučinskaitė
1
54 kgZabelinskaya
2
52 kgBecker
3
64 kgBastianelli
4
60 kgCantele
7
58 kgVisser
8
59 kgMartisova
9
64 kgKupfernagel
10
68 kgvan Dijk
11
71 kgAndruk
12
56 kgKoedooder
16
69 kgKasper
17
59 kgSlappendel
22
67 kgMin
36
56 kgBrennauer
47
63 kgVilajosana
48
57 kgDeignan
50
57 kgSolovey
51
56 kgKononenko
58
68 kgLuo
63
68 kgWong Wan
64
54 kgHosking
74
60 kg
1
54 kgZabelinskaya
2
52 kgBecker
3
64 kgBastianelli
4
60 kgCantele
7
58 kgVisser
8
59 kgMartisova
9
64 kgKupfernagel
10
68 kgvan Dijk
11
71 kgAndruk
12
56 kgKoedooder
16
69 kgKasper
17
59 kgSlappendel
22
67 kgMin
36
56 kgBrennauer
47
63 kgVilajosana
48
57 kgDeignan
50
57 kgSolovey
51
56 kgKononenko
58
68 kgLuo
63
68 kgWong Wan
64
54 kgHosking
74
60 kg
Weight (KG) →
Result →
71
52
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | PUČINSKAITĖ Edita | 54 |
2 | ZABELINSKAYA Olga | 52 |
3 | BECKER Charlotte | 64 |
4 | BASTIANELLI Marta | 60 |
7 | CANTELE Noemi | 58 |
8 | VISSER Adrie | 59 |
9 | MARTISOVA Julia | 64 |
10 | KUPFERNAGEL Hanka | 68 |
11 | VAN DIJK Ellen | 71 |
12 | ANDRUK Alona | 56 |
16 | KOEDOODER Vera | 69 |
17 | KASPER Romy | 59 |
22 | SLAPPENDEL Iris | 67 |
36 | MIN Gao | 56 |
47 | BRENNAUER Lisa | 63 |
48 | VILAJOSANA Marta | 57 |
50 | DEIGNAN Elizabeth | 57 |
51 | SOLOVEY Hanna | 56 |
58 | KONONENKO Valeriya | 68 |
63 | LUO Xiao Ling | 68 |
64 | WONG WAN Yiu | 54 |
74 | HOSKING Chloe | 60 |