Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Deignan
1
57 kgArndt
2
59 kgJohansson
3
58 kgLichtenberg
4
52 kgTeutenberg
5
64 kgWyman
6
56 kgMiller
7
52 kgVisser
8
59 kgMustonen
9
58 kgLaws
10
54 kgBaccaille
12
61 kgPieters
14
58 kgVillumsen
15
59 kgCantele
16
58 kgHosking
17
60 kgBoyarskaya
18
67 kgKasper
20
59 kgGuderzo
21
54 kg
1
57 kgArndt
2
59 kgJohansson
3
58 kgLichtenberg
4
52 kgTeutenberg
5
64 kgWyman
6
56 kgMiller
7
52 kgVisser
8
59 kgMustonen
9
58 kgLaws
10
54 kgBaccaille
12
61 kgPieters
14
58 kgVillumsen
15
59 kgCantele
16
58 kgHosking
17
60 kgBoyarskaya
18
67 kgKasper
20
59 kgGuderzo
21
54 kg
Weight (KG) →
Result →
67
52
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | DEIGNAN Elizabeth | 57 |
2 | ARNDT Judith | 59 |
3 | JOHANSSON Emma | 58 |
4 | LICHTENBERG Claudia | 52 |
5 | TEUTENBERG Ina-Yoko | 64 |
6 | WYMAN Helen | 56 |
7 | MILLER Amanda | 52 |
8 | VISSER Adrie | 59 |
9 | MUSTONEN Sara | 58 |
10 | LAWS Sharon | 54 |
12 | BACCAILLE Monia | 61 |
14 | PIETERS Amy | 58 |
15 | VILLUMSEN Linda | 59 |
16 | CANTELE Noemi | 58 |
17 | HOSKING Chloe | 60 |
18 | BOYARSKAYA Natalia | 67 |
20 | KASPER Romy | 59 |
21 | GUDERZO Tatiana | 54 |