Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 30
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Johansson
1
58 kgScandolara
2
52 kgvan Vleuten
3
59 kgBrennauer
4
63 kgBrand
5
57 kgGuderzo
6
54 kgSmall
7
55 kgvan der Breggen
10
56 kgDeignan
11
57 kgKupfernagel
14
68 kgVisser
15
59 kgKasper
16
59 kgVillumsen
17
59 kgDe Vocht
19
61 kgSpratt
23
55 kgGunnewijk
24
67 kg
1
58 kgScandolara
2
52 kgvan Vleuten
3
59 kgBrennauer
4
63 kgBrand
5
57 kgGuderzo
6
54 kgSmall
7
55 kgvan der Breggen
10
56 kgDeignan
11
57 kgKupfernagel
14
68 kgVisser
15
59 kgKasper
16
59 kgVillumsen
17
59 kgDe Vocht
19
61 kgSpratt
23
55 kgGunnewijk
24
67 kg
Weight (KG) →
Result →
68
52
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSSON Emma | 58 |
2 | SCANDOLARA Valentina | 52 |
3 | VAN VLEUTEN Annemiek | 59 |
4 | BRENNAUER Lisa | 63 |
5 | BRAND Lucinda | 57 |
6 | GUDERZO Tatiana | 54 |
7 | SMALL Carmen | 55 |
10 | VAN DER BREGGEN Anna | 56 |
11 | DEIGNAN Elizabeth | 57 |
14 | KUPFERNAGEL Hanka | 68 |
15 | VISSER Adrie | 59 |
16 | KASPER Romy | 59 |
17 | VILLUMSEN Linda | 59 |
19 | DE VOCHT Liesbet | 61 |
23 | SPRATT Amanda | 55 |
24 | GUNNEWIJK Loes | 67 |