Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Hammes
1
54 kgLippert
2
56 kgHarris
3
57 kgPieters
4
58 kgKlein
5
61 kgvan den Broek-Blaak
7
64 kgWild
8
75 kgBrand
9
57 kgDeignan
10
57 kgFahlin
13
63 kgHenderson
15
58 kgNorman Leth
16
68 kgNorsgaard
17
65 kgLudwig
18
55 kgEnsing
20
62 kgCopponi
21
55 kgCecchini
24
52 kg
1
54 kgLippert
2
56 kgHarris
3
57 kgPieters
4
58 kgKlein
5
61 kgvan den Broek-Blaak
7
64 kgWild
8
75 kgBrand
9
57 kgDeignan
10
57 kgFahlin
13
63 kgHenderson
15
58 kgNorman Leth
16
68 kgNorsgaard
17
65 kgLudwig
18
55 kgEnsing
20
62 kgCopponi
21
55 kgCecchini
24
52 kg
Weight (KG) →
Result →
75
52
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | HAMMES Kathrin | 54 |
2 | LIPPERT Liane | 56 |
3 | HARRIS Ella | 57 |
4 | PIETERS Amy | 58 |
5 | KLEIN Lisa | 61 |
7 | VAN DEN BROEK-BLAAK Chantal | 64 |
8 | WILD Kirsten | 75 |
9 | BRAND Lucinda | 57 |
10 | DEIGNAN Elizabeth | 57 |
13 | FAHLIN Emilia | 63 |
15 | HENDERSON Anna | 58 |
16 | NORMAN LETH Julie | 68 |
17 | NORSGAARD Emma | 65 |
18 | LUDWIG Hannah | 55 |
20 | ENSING Janneke | 62 |
21 | COPPONI Clara | 55 |
24 | CECCHINI Elena | 52 |