Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Kopecky
1
66 kgBrand
2
57 kgNorsgaard
3
65 kgWiebes
4
60 kgPieters
5
58 kgFahlin
6
63 kgHenderson
8
58 kgDeignan
9
57 kgKlein
10
61 kgCecchini
11
52 kgvan den Broek-Blaak
12
64 kgLippert
14
56 kgMagner
15
57 kgWild
18
75 kgMajerus
19
56 kgAndersen
21
55 kgHarris
22
57 kgD'hoore
23
63 kgCavalli
25
53 kgNorman Leth
26
68 kgLaurance
27
62 kg
1
66 kgBrand
2
57 kgNorsgaard
3
65 kgWiebes
4
60 kgPieters
5
58 kgFahlin
6
63 kgHenderson
8
58 kgDeignan
9
57 kgKlein
10
61 kgCecchini
11
52 kgvan den Broek-Blaak
12
64 kgLippert
14
56 kgMagner
15
57 kgWild
18
75 kgMajerus
19
56 kgAndersen
21
55 kgHarris
22
57 kgD'hoore
23
63 kgCavalli
25
53 kgNorman Leth
26
68 kgLaurance
27
62 kg
Weight (KG) →
Result →
75
52
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | KOPECKY Lotte | 66 |
2 | BRAND Lucinda | 57 |
3 | NORSGAARD Emma | 65 |
4 | WIEBES Lorena | 60 |
5 | PIETERS Amy | 58 |
6 | FAHLIN Emilia | 63 |
8 | HENDERSON Anna | 58 |
9 | DEIGNAN Elizabeth | 57 |
10 | KLEIN Lisa | 61 |
11 | CECCHINI Elena | 52 |
12 | VAN DEN BROEK-BLAAK Chantal | 64 |
14 | LIPPERT Liane | 56 |
15 | MAGNER Alexis | 57 |
18 | WILD Kirsten | 75 |
19 | MAJERUS Christine | 56 |
21 | ANDERSEN Susanne | 55 |
22 | HARRIS Ella | 57 |
23 | D'HOORE Jolien | 63 |
25 | CAVALLI Marta | 53 |
26 | NORMAN LETH Julie | 68 |
27 | LAURANCE Typhaine | 62 |