Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Neirynck
1
78 kgNeyens
2
74 kgde Jonge
3
65 kgPardini
4
68 kgDe Neef
8
75 kgPauwels
9
65 kgBarbé
10
75 kgCommeyne
19
70 kgNolf
21
68 kgLodewyck
24
70 kgCarlsen
28
68 kgCappelle
29
76 kgVanheule
32
76 kgSalomein
34
80 kgvan Genechten
36
67 kgSinkeldam
39
77 kgKreder
46
67 kg
1
78 kgNeyens
2
74 kgde Jonge
3
65 kgPardini
4
68 kgDe Neef
8
75 kgPauwels
9
65 kgBarbé
10
75 kgCommeyne
19
70 kgNolf
21
68 kgLodewyck
24
70 kgCarlsen
28
68 kgCappelle
29
76 kgVanheule
32
76 kgSalomein
34
80 kgvan Genechten
36
67 kgSinkeldam
39
77 kgKreder
46
67 kg
Weight (KG) →
Result →
80
65
1
46
# | Rider | Weight (KG) |
---|---|---|
1 | NEIRYNCK Stijn | 78 |
2 | NEYENS Maarten | 74 |
3 | DE JONGE Maarten | 65 |
4 | PARDINI Olivier | 68 |
8 | DE NEEF Steven | 75 |
9 | PAUWELS Serge | 65 |
10 | BARBÉ Koen | 75 |
19 | COMMEYNE Davy | 70 |
21 | NOLF Frederiek | 68 |
24 | LODEWYCK Klaas | 70 |
28 | CARLSEN Kirk | 68 |
29 | CAPPELLE Dieter | 76 |
32 | VANHEULE Bart | 76 |
34 | SALOMEIN Jarl | 80 |
36 | VAN GENECHTEN Jonas | 67 |
39 | SINKELDAM Ramon | 77 |
46 | KREDER Michel | 67 |