Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
De Gendt
1
73 kgKruijswijk
4
63 kgPhinney
5
82 kgDe Neef
6
75 kgDe Vreese
12
78 kgSalomein
13
80 kgNeirynck
14
78 kgTerweduwe
17
67 kgCommeyne
21
70 kgAdams
22
63 kgPieters
25
73 kgWallays
26
77 kgGhyselinck
27
74 kgAl
28
72 kgVan Melsen
34
77 kgNeyens
36
74 kgJodts
37
74 kgSinkeldam
38
77 kgPardini
41
68 kgvan Poppel
46
78 kgBoeckmans
48
76 kg
1
73 kgKruijswijk
4
63 kgPhinney
5
82 kgDe Neef
6
75 kgDe Vreese
12
78 kgSalomein
13
80 kgNeirynck
14
78 kgTerweduwe
17
67 kgCommeyne
21
70 kgAdams
22
63 kgPieters
25
73 kgWallays
26
77 kgGhyselinck
27
74 kgAl
28
72 kgVan Melsen
34
77 kgNeyens
36
74 kgJodts
37
74 kgSinkeldam
38
77 kgPardini
41
68 kgvan Poppel
46
78 kgBoeckmans
48
76 kg
Weight (KG) →
Result →
82
63
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
4 | KRUIJSWIJK Steven | 63 |
5 | PHINNEY Taylor | 82 |
6 | DE NEEF Steven | 75 |
12 | DE VREESE Laurens | 78 |
13 | SALOMEIN Jarl | 80 |
14 | NEIRYNCK Stijn | 78 |
17 | TERWEDUWE Kenny | 67 |
21 | COMMEYNE Davy | 70 |
22 | ADAMS Joeri | 63 |
25 | PIETERS Sibrecht | 73 |
26 | WALLAYS Jelle | 77 |
27 | GHYSELINCK Jan | 74 |
28 | AL Thijs | 72 |
34 | VAN MELSEN Kévin | 77 |
36 | NEYENS Maarten | 74 |
37 | JODTS Sven | 74 |
38 | SINKELDAM Ramon | 77 |
41 | PARDINI Olivier | 68 |
46 | VAN POPPEL Boy | 78 |
48 | BOECKMANS Kris | 76 |