Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 158
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
de Kort
1
69 kgGilbert
2
75 kgWagner
3
75 kgvan Hummel
4
64 kgPetrov
12
66 kgDe Vocht
22
78 kgKriit
23
63 kgElijzen
27
80 kgFothen
38
71 kgKohl
40
61 kgBenetseder
41
65 kgSchillinger
43
72 kgVan Hecke
58
69 kgRohregger
67
63 kgDe Weert
69
70 kgVan den Broeck
70
69 kgMüller
72
69 kgKopeinig
100
63 kg
1
69 kgGilbert
2
75 kgWagner
3
75 kgvan Hummel
4
64 kgPetrov
12
66 kgDe Vocht
22
78 kgKriit
23
63 kgElijzen
27
80 kgFothen
38
71 kgKohl
40
61 kgBenetseder
41
65 kgSchillinger
43
72 kgVan Hecke
58
69 kgRohregger
67
63 kgDe Weert
69
70 kgVan den Broeck
70
69 kgMüller
72
69 kgKopeinig
100
63 kg
Weight (KG) →
Result →
80
61
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | DE KORT Koen | 69 |
2 | GILBERT Philippe | 75 |
3 | WAGNER Robert | 75 |
4 | VAN HUMMEL Kenny | 64 |
12 | PETROV Daniel Bogomilov | 66 |
22 | DE VOCHT Wim | 78 |
23 | KRIIT Kalle | 63 |
27 | ELIJZEN Michiel | 80 |
38 | FOTHEN Thomas | 71 |
40 | KOHL Bernhard | 61 |
41 | BENETSEDER Josef | 65 |
43 | SCHILLINGER Andreas | 72 |
58 | VAN HECKE Preben | 69 |
67 | ROHREGGER Thomas | 63 |
69 | DE WEERT Kevin | 70 |
70 | VAN DEN BROECK Jurgen | 69 |
72 | MÜLLER Christian | 69 |
100 | KOPEINIG René | 63 |