Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Gilbert
3
75 kgVan Hecke
6
69 kgde Kort
7
69 kgKohl
9
61 kgSchillinger
12
72 kgDe Weert
15
70 kgDe Vocht
18
78 kgKriit
20
63 kgPetrov
23
66 kgVan den Broeck
24
69 kgBenetseder
32
65 kgFothen
37
71 kgRohregger
47
63 kgvan Hummel
61
64 kgKopeinig
68
63 kgMüller
73
69 kgWagner
81
75 kgElijzen
85
80 kg
3
75 kgVan Hecke
6
69 kgde Kort
7
69 kgKohl
9
61 kgSchillinger
12
72 kgDe Weert
15
70 kgDe Vocht
18
78 kgKriit
20
63 kgPetrov
23
66 kgVan den Broeck
24
69 kgBenetseder
32
65 kgFothen
37
71 kgRohregger
47
63 kgvan Hummel
61
64 kgKopeinig
68
63 kgMüller
73
69 kgWagner
81
75 kgElijzen
85
80 kg
Weight (KG) →
Result →
80
61
3
85
# | Rider | Weight (KG) |
---|---|---|
3 | GILBERT Philippe | 75 |
6 | VAN HECKE Preben | 69 |
7 | DE KORT Koen | 69 |
9 | KOHL Bernhard | 61 |
12 | SCHILLINGER Andreas | 72 |
15 | DE WEERT Kevin | 70 |
18 | DE VOCHT Wim | 78 |
20 | KRIIT Kalle | 63 |
23 | PETROV Daniel Bogomilov | 66 |
24 | VAN DEN BROECK Jurgen | 69 |
32 | BENETSEDER Josef | 65 |
37 | FOTHEN Thomas | 71 |
47 | ROHREGGER Thomas | 63 |
61 | VAN HUMMEL Kenny | 64 |
68 | KOPEINIG René | 63 |
73 | MÜLLER Christian | 69 |
81 | WAGNER Robert | 75 |
85 | ELIJZEN Michiel | 80 |