Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Jurčo
1
69 kgVeelers
2
75 kgBole
3
69 kgSantambrogio
4
63 kgFriedemann
7
75 kgSuray
8
67 kgIngels
9
70 kgWeylandt
10
72 kgEibegger
11
68 kgBoom
15
75 kgVastaranta
22
63 kgDekker
26
69 kgPossoni
29
56 kgMarcato
32
67 kgGraf
35
72 kgVanendert
41
62 kgIsta
60
70 kgVelits
66
70 kgHollenstein
68
80 kgStamsnijder
74
76 kgMandri
77
66 kgVelits
82
63 kgViganò
87
67 kg
1
69 kgVeelers
2
75 kgBole
3
69 kgSantambrogio
4
63 kgFriedemann
7
75 kgSuray
8
67 kgIngels
9
70 kgWeylandt
10
72 kgEibegger
11
68 kgBoom
15
75 kgVastaranta
22
63 kgDekker
26
69 kgPossoni
29
56 kgMarcato
32
67 kgGraf
35
72 kgVanendert
41
62 kgIsta
60
70 kgVelits
66
70 kgHollenstein
68
80 kgStamsnijder
74
76 kgMandri
77
66 kgVelits
82
63 kgViganò
87
67 kg
Weight (KG) →
Result →
80
56
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | JURČO Matej | 69 |
2 | VEELERS Tom | 75 |
3 | BOLE Grega | 69 |
4 | SANTAMBROGIO Mauro | 63 |
7 | FRIEDEMANN Matthias | 75 |
8 | SURAY Gil | 67 |
9 | INGELS Nick | 70 |
10 | WEYLANDT Wouter | 72 |
11 | EIBEGGER Markus | 68 |
15 | BOOM Lars | 75 |
22 | VASTARANTA Jukka | 63 |
26 | DEKKER Thomas | 69 |
29 | POSSONI Morris | 56 |
32 | MARCATO Marco | 67 |
35 | GRAF Andreas | 72 |
41 | VANENDERT Jelle | 62 |
60 | ISTA Kevyn | 70 |
66 | VELITS Martin | 70 |
68 | HOLLENSTEIN Reto | 80 |
74 | STAMSNIJDER Tom | 76 |
77 | MANDRI René | 66 |
82 | VELITS Peter | 63 |
87 | VIGANÒ Davide | 67 |