Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.3 * weight + 184
This means that on average for every extra kilogram weight a rider loses -2.3 positions in the result.
Langeveld
1
67 kgGatto
3
67 kgBelletti
4
72 kgRuijgh
6
64 kgVelits
8
70 kgFinetto
12
62 kgBole
13
69 kgBiesek
26
66 kgHollenstein
31
80 kgAaen Jørgensen
33
63 kgCapecchi
35
65 kgVelits
36
63 kgGesink
49
70 kgCieślik
50
65 kgWyss
52
63 kgGraf
59
72 kgPöll
90
60 kgHristov
97
57 kg
1
67 kgGatto
3
67 kgBelletti
4
72 kgRuijgh
6
64 kgVelits
8
70 kgFinetto
12
62 kgBole
13
69 kgBiesek
26
66 kgHollenstein
31
80 kgAaen Jørgensen
33
63 kgCapecchi
35
65 kgVelits
36
63 kgGesink
49
70 kgCieślik
50
65 kgWyss
52
63 kgGraf
59
72 kgPöll
90
60 kgHristov
97
57 kg
Weight (KG) →
Result →
80
57
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | LANGEVELD Sebastian | 67 |
3 | GATTO Oscar | 67 |
4 | BELLETTI Manuel | 72 |
6 | RUIJGH Rob | 64 |
8 | VELITS Martin | 70 |
12 | FINETTO Mauro | 62 |
13 | BOLE Grega | 69 |
26 | BIESEK Szymon | 66 |
31 | HOLLENSTEIN Reto | 80 |
33 | AAEN JØRGENSEN Jonas | 63 |
35 | CAPECCHI Eros | 65 |
36 | VELITS Peter | 63 |
49 | GESINK Robert | 70 |
50 | CIEŚLIK Paweł | 65 |
52 | WYSS Marcel | 63 |
59 | GRAF Andreas | 72 |
90 | PÖLL Stefan | 60 |
97 | HRISTOV Stefan Koychev | 57 |