Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 48
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Brkic
1
58 kgWirtgen
2
77 kgPlanckaert
3
69 kgLeysen
4
78 kgGeniets
6
73 kgVlasov
7
68 kgEriksson
9
64 kgKongstad
11
75 kgMaas
12
70 kgDe Poorter
13
68 kgBeullens
15
79 kgRajović
18
74 kgGamper
21
80 kgHammerschmid
22
60 kgvan den Berg
35
78 kgPaasschens
39
75 kgWouters
42
75 kgVeltman
49
66 kgVahtra
65
85 kg
1
58 kgWirtgen
2
77 kgPlanckaert
3
69 kgLeysen
4
78 kgGeniets
6
73 kgVlasov
7
68 kgEriksson
9
64 kgKongstad
11
75 kgMaas
12
70 kgDe Poorter
13
68 kgBeullens
15
79 kgRajović
18
74 kgGamper
21
80 kgHammerschmid
22
60 kgvan den Berg
35
78 kgPaasschens
39
75 kgWouters
42
75 kgVeltman
49
66 kgVahtra
65
85 kg
Weight (KG) →
Result →
85
58
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | BRKIC Benjamin | 58 |
2 | WIRTGEN Tom | 77 |
3 | PLANCKAERT Emiel | 69 |
4 | LEYSEN Senne | 78 |
6 | GENIETS Kevin | 73 |
7 | VLASOV Aleksandr | 68 |
9 | ERIKSSON Lucas | 64 |
11 | KONGSTAD Tobias | 75 |
12 | MAAS Jan | 70 |
13 | DE POORTER Maxime | 68 |
15 | BEULLENS Cedric | 79 |
18 | RAJOVIĆ Dušan | 74 |
21 | GAMPER Patrick | 80 |
22 | HAMMERSCHMID Raphael | 60 |
35 | VAN DEN BERG Julius | 78 |
39 | PAASSCHENS Mathijs | 75 |
42 | WOUTERS Enzo | 75 |
49 | VELTMAN Milan | 66 |
65 | VAHTRA Norman | 85 |