Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 26
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kongstad
1
75 kgVlasov
2
68 kgDe Poorter
4
68 kgRajović
5
74 kgMaas
6
70 kgBrkic
7
58 kgPlanckaert
8
69 kgWirtgen
9
77 kgLeysen
11
78 kgGeniets
14
73 kgIversen
16
77 kgEriksson
20
64 kgBeullens
21
79 kgVahtra
27
85 kgPaasschens
30
75 kgHuber
33
63 kgvan den Berg
35
78 kgGamper
49
80 kgHammerschmid
53
60 kgVeltman
73
66 kgWouters
93
75 kgJaecques
111
77 kgLauk
128
69 kg
1
75 kgVlasov
2
68 kgDe Poorter
4
68 kgRajović
5
74 kgMaas
6
70 kgBrkic
7
58 kgPlanckaert
8
69 kgWirtgen
9
77 kgLeysen
11
78 kgGeniets
14
73 kgIversen
16
77 kgEriksson
20
64 kgBeullens
21
79 kgVahtra
27
85 kgPaasschens
30
75 kgHuber
33
63 kgvan den Berg
35
78 kgGamper
49
80 kgHammerschmid
53
60 kgVeltman
73
66 kgWouters
93
75 kgJaecques
111
77 kgLauk
128
69 kg
Weight (KG) →
Result →
85
58
1
128
# | Rider | Weight (KG) |
---|---|---|
1 | KONGSTAD Tobias | 75 |
2 | VLASOV Aleksandr | 68 |
4 | DE POORTER Maxime | 68 |
5 | RAJOVIĆ Dušan | 74 |
6 | MAAS Jan | 70 |
7 | BRKIC Benjamin | 58 |
8 | PLANCKAERT Emiel | 69 |
9 | WIRTGEN Tom | 77 |
11 | LEYSEN Senne | 78 |
14 | GENIETS Kevin | 73 |
16 | IVERSEN Rasmus Byriel | 77 |
20 | ERIKSSON Lucas | 64 |
21 | BEULLENS Cedric | 79 |
27 | VAHTRA Norman | 85 |
30 | PAASSCHENS Mathijs | 75 |
33 | HUBER Marcel | 63 |
35 | VAN DEN BERG Julius | 78 |
49 | GAMPER Patrick | 80 |
53 | HAMMERSCHMID Raphael | 60 |
73 | VELTMAN Milan | 66 |
93 | WOUTERS Enzo | 75 |
111 | JAECQUES Simon | 77 |
128 | LAUK Karl Patrick | 69 |