Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 57
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Geniets
1
73 kgLeysen
2
78 kgPlanckaert
3
69 kgWirtgen
4
77 kgEriksson
6
64 kgBrkic
8
58 kgVlasov
9
68 kgMaas
13
70 kgHammerschmid
14
60 kgKongstad
15
75 kgDe Poorter
16
68 kgGamper
19
80 kgBeullens
22
79 kgRajović
29
74 kgWouters
31
75 kgvan den Berg
43
78 kgVeltman
49
66 kgPaasschens
51
75 kgVahtra
69
85 kgIversen
99
77 kgLauk
101
69 kg
1
73 kgLeysen
2
78 kgPlanckaert
3
69 kgWirtgen
4
77 kgEriksson
6
64 kgBrkic
8
58 kgVlasov
9
68 kgMaas
13
70 kgHammerschmid
14
60 kgKongstad
15
75 kgDe Poorter
16
68 kgGamper
19
80 kgBeullens
22
79 kgRajović
29
74 kgWouters
31
75 kgvan den Berg
43
78 kgVeltman
49
66 kgPaasschens
51
75 kgVahtra
69
85 kgIversen
99
77 kgLauk
101
69 kg
Weight (KG) →
Result →
85
58
1
101
# | Rider | Weight (KG) |
---|---|---|
1 | GENIETS Kevin | 73 |
2 | LEYSEN Senne | 78 |
3 | PLANCKAERT Emiel | 69 |
4 | WIRTGEN Tom | 77 |
6 | ERIKSSON Lucas | 64 |
8 | BRKIC Benjamin | 58 |
9 | VLASOV Aleksandr | 68 |
13 | MAAS Jan | 70 |
14 | HAMMERSCHMID Raphael | 60 |
15 | KONGSTAD Tobias | 75 |
16 | DE POORTER Maxime | 68 |
19 | GAMPER Patrick | 80 |
22 | BEULLENS Cedric | 79 |
29 | RAJOVIĆ Dušan | 74 |
31 | WOUTERS Enzo | 75 |
43 | VAN DEN BERG Julius | 78 |
49 | VELTMAN Milan | 66 |
51 | PAASSCHENS Mathijs | 75 |
69 | VAHTRA Norman | 85 |
99 | IVERSEN Rasmus Byriel | 77 |
101 | LAUK Karl Patrick | 69 |