Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Wouters
1
75 kgWirtgen
2
77 kgRajović
4
74 kgLeysen
7
78 kgPlanckaert
8
69 kgKongstad
9
75 kgBrkic
11
58 kgDe Poorter
14
68 kgBeullens
15
79 kgMaas
18
70 kgvan den Berg
24
78 kgGamper
27
80 kgVlasov
30
68 kgHammerschmid
37
60 kgPaasschens
38
75 kgVeltman
39
66 kgEriksson
42
64 kgGeniets
44
73 kgVahtra
61
85 kg
1
75 kgWirtgen
2
77 kgRajović
4
74 kgLeysen
7
78 kgPlanckaert
8
69 kgKongstad
9
75 kgBrkic
11
58 kgDe Poorter
14
68 kgBeullens
15
79 kgMaas
18
70 kgvan den Berg
24
78 kgGamper
27
80 kgVlasov
30
68 kgHammerschmid
37
60 kgPaasschens
38
75 kgVeltman
39
66 kgEriksson
42
64 kgGeniets
44
73 kgVahtra
61
85 kg
Weight (KG) →
Result →
85
58
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | WOUTERS Enzo | 75 |
2 | WIRTGEN Tom | 77 |
4 | RAJOVIĆ Dušan | 74 |
7 | LEYSEN Senne | 78 |
8 | PLANCKAERT Emiel | 69 |
9 | KONGSTAD Tobias | 75 |
11 | BRKIC Benjamin | 58 |
14 | DE POORTER Maxime | 68 |
15 | BEULLENS Cedric | 79 |
18 | MAAS Jan | 70 |
24 | VAN DEN BERG Julius | 78 |
27 | GAMPER Patrick | 80 |
30 | VLASOV Aleksandr | 68 |
37 | HAMMERSCHMID Raphael | 60 |
38 | PAASSCHENS Mathijs | 75 |
39 | VELTMAN Milan | 66 |
42 | ERIKSSON Lucas | 64 |
44 | GENIETS Kevin | 73 |
61 | VAHTRA Norman | 85 |