Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Beullens
2
79 kgLambrecht
3
56 kgZimmermann
4
70 kgSivakov
5
70 kgJacobs
8
78 kgHirschi
14
61 kgGall
15
66 kgVanhoucke
16
65 kgPhilipsen
18
75 kgRombouts
23
63 kgWirtgen
25
63 kgRies
26
67 kgGamper
28
80 kgGroß
33
71 kgBouwmans
37
64 kgPrimožič
38
60 kgKovács
41
71 kgClauss
44
71 kgvan Niekerk
45
59 kgRajović
52
74 kgDevos
65
75 kgKulset
68
68 kgFranz
69
60 kgNolde
77
79 kg
2
79 kgLambrecht
3
56 kgZimmermann
4
70 kgSivakov
5
70 kgJacobs
8
78 kgHirschi
14
61 kgGall
15
66 kgVanhoucke
16
65 kgPhilipsen
18
75 kgRombouts
23
63 kgWirtgen
25
63 kgRies
26
67 kgGamper
28
80 kgGroß
33
71 kgBouwmans
37
64 kgPrimožič
38
60 kgKovács
41
71 kgClauss
44
71 kgvan Niekerk
45
59 kgRajović
52
74 kgDevos
65
75 kgKulset
68
68 kgFranz
69
60 kgNolde
77
79 kg
Weight (KG) →
Result →
80
56
2
77
# | Rider | Weight (KG) |
---|---|---|
2 | BEULLENS Cedric | 79 |
3 | LAMBRECHT Bjorg | 56 |
4 | ZIMMERMANN Georg | 70 |
5 | SIVAKOV Pavel | 70 |
8 | JACOBS Johan | 78 |
14 | HIRSCHI Marc | 61 |
15 | GALL Felix | 66 |
16 | VANHOUCKE Harm | 65 |
18 | PHILIPSEN Jasper | 75 |
23 | ROMBOUTS Seppe | 63 |
25 | WIRTGEN Luc | 63 |
26 | RIES Michel | 67 |
28 | GAMPER Patrick | 80 |
33 | GROß Felix | 71 |
37 | BOUWMANS Dylan | 64 |
38 | PRIMOŽIČ Jaka | 60 |
41 | KOVÁCS Dávid | 71 |
44 | CLAUSS Marc | 71 |
45 | VAN NIEKERK Aidan | 59 |
52 | RAJOVIĆ Dušan | 74 |
65 | DEVOS Han | 75 |
68 | KULSET Sindre | 68 |
69 | FRANZ Toni | 60 |
77 | NOLDE Tobias | 79 |