Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 118
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Arndt
2
77.5 kgTamouridis
4
70 kgOjavee
7
80 kgTzortzakis
8
80 kgStević
11
66 kgAkdilek
12
68 kgSayar
14
64 kgGraf
21
72 kgPetrov
22
66 kgBourgeois
25
61 kgFothen
27
71 kgIlias
34
69 kgRiška
40
73 kgKasa
46
72 kgBajc
50
65 kgJovanović
55
60 kgGerganov
57
60 kgYates
69
73 kgČanecký
76
72 kgSoula
83
68 kgBoillat
85
68 kgGreen
96
70 kgBouglas
103
71 kg
2
77.5 kgTamouridis
4
70 kgOjavee
7
80 kgTzortzakis
8
80 kgStević
11
66 kgAkdilek
12
68 kgSayar
14
64 kgGraf
21
72 kgPetrov
22
66 kgBourgeois
25
61 kgFothen
27
71 kgIlias
34
69 kgRiška
40
73 kgKasa
46
72 kgBajc
50
65 kgJovanović
55
60 kgGerganov
57
60 kgYates
69
73 kgČanecký
76
72 kgSoula
83
68 kgBoillat
85
68 kgGreen
96
70 kgBouglas
103
71 kg
Weight (KG) →
Result →
80
60
2
103
# | Rider | Weight (KG) |
---|---|---|
2 | ARNDT Nikias | 77.5 |
4 | TAMOURIDIS Ioannis | 70 |
7 | OJAVEE Mart | 80 |
8 | TZORTZAKIS Polychronis | 80 |
11 | STEVIĆ Ivan | 66 |
12 | AKDILEK Ahmet | 68 |
14 | SAYAR Mustafa | 64 |
21 | GRAF Andreas | 72 |
22 | PETROV Daniel Bogomilov | 66 |
25 | BOURGEOIS Guillaume | 61 |
27 | FOTHEN Markus | 71 |
34 | ILIAS Periklis | 69 |
40 | RIŠKA Martin | 73 |
46 | KASA Gabor | 72 |
50 | BAJC Andi | 65 |
55 | JOVANOVIĆ Nebojša | 60 |
57 | GERGANOV Evgeni | 60 |
69 | YATES Jeremy | 73 |
76 | ČANECKÝ Marek | 72 |
83 | SOULA Guillaume | 68 |
85 | BOILLAT Joris | 68 |
96 | GREEN Siméon | 70 |
103 | BOUGLAS Georgios | 71 |