Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 152
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Tamouridis
1
70 kgGraf
2
72 kgFothen
4
71 kgArndt
5
77.5 kgGerganov
6
60 kgTzortzakis
7
80 kgSayar
14
64 kgIlias
16
69 kgBouglas
17
71 kgYates
20
73 kgOjavee
23
80 kgStević
25
66 kgRiška
28
73 kgPetrov
35
66 kgBoillat
38
68 kgČanecký
40
72 kgBourgeois
42
61 kgKasa
49
72 kgAkdilek
51
68 kgBajc
71
65 kgJovanović
77
60 kgGreen
88
70 kgSoula
98
68 kg
1
70 kgGraf
2
72 kgFothen
4
71 kgArndt
5
77.5 kgGerganov
6
60 kgTzortzakis
7
80 kgSayar
14
64 kgIlias
16
69 kgBouglas
17
71 kgYates
20
73 kgOjavee
23
80 kgStević
25
66 kgRiška
28
73 kgPetrov
35
66 kgBoillat
38
68 kgČanecký
40
72 kgBourgeois
42
61 kgKasa
49
72 kgAkdilek
51
68 kgBajc
71
65 kgJovanović
77
60 kgGreen
88
70 kgSoula
98
68 kg
Weight (KG) →
Result →
80
60
1
98
# | Rider | Weight (KG) |
---|---|---|
1 | TAMOURIDIS Ioannis | 70 |
2 | GRAF Andreas | 72 |
4 | FOTHEN Markus | 71 |
5 | ARNDT Nikias | 77.5 |
6 | GERGANOV Evgeni | 60 |
7 | TZORTZAKIS Polychronis | 80 |
14 | SAYAR Mustafa | 64 |
16 | ILIAS Periklis | 69 |
17 | BOUGLAS Georgios | 71 |
20 | YATES Jeremy | 73 |
23 | OJAVEE Mart | 80 |
25 | STEVIĆ Ivan | 66 |
28 | RIŠKA Martin | 73 |
35 | PETROV Daniel Bogomilov | 66 |
38 | BOILLAT Joris | 68 |
40 | ČANECKÝ Marek | 72 |
42 | BOURGEOIS Guillaume | 61 |
49 | KASA Gabor | 72 |
51 | AKDILEK Ahmet | 68 |
71 | BAJC Andi | 65 |
77 | JOVANOVIĆ Nebojša | 60 |
88 | GREEN Siméon | 70 |
98 | SOULA Guillaume | 68 |