Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 134
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Tamouridis
3
70 kgGraf
4
72 kgBajc
6
65 kgAkdilek
8
68 kgRiška
9
73 kgTzortzakis
11
80 kgKasa
12
72 kgYates
13
73 kgČanecký
15
72 kgFothen
16
71 kgBoillat
17
68 kgArndt
18
77.5 kgGerganov
19
60 kgOjavee
25
80 kgStević
26
66 kgBourgeois
30
61 kgPetrov
37
66 kgIlias
41
69 kgJovanović
57
60 kgBouglas
71
71 kgSoula
87
68 kgSayar
89
64 kg
3
70 kgGraf
4
72 kgBajc
6
65 kgAkdilek
8
68 kgRiška
9
73 kgTzortzakis
11
80 kgKasa
12
72 kgYates
13
73 kgČanecký
15
72 kgFothen
16
71 kgBoillat
17
68 kgArndt
18
77.5 kgGerganov
19
60 kgOjavee
25
80 kgStević
26
66 kgBourgeois
30
61 kgPetrov
37
66 kgIlias
41
69 kgJovanović
57
60 kgBouglas
71
71 kgSoula
87
68 kgSayar
89
64 kg
Weight (KG) →
Result →
80
60
3
89
# | Rider | Weight (KG) |
---|---|---|
3 | TAMOURIDIS Ioannis | 70 |
4 | GRAF Andreas | 72 |
6 | BAJC Andi | 65 |
8 | AKDILEK Ahmet | 68 |
9 | RIŠKA Martin | 73 |
11 | TZORTZAKIS Polychronis | 80 |
12 | KASA Gabor | 72 |
13 | YATES Jeremy | 73 |
15 | ČANECKÝ Marek | 72 |
16 | FOTHEN Markus | 71 |
17 | BOILLAT Joris | 68 |
18 | ARNDT Nikias | 77.5 |
19 | GERGANOV Evgeni | 60 |
25 | OJAVEE Mart | 80 |
26 | STEVIĆ Ivan | 66 |
30 | BOURGEOIS Guillaume | 61 |
37 | PETROV Daniel Bogomilov | 66 |
41 | ILIAS Periklis | 69 |
57 | JOVANOVIĆ Nebojša | 60 |
71 | BOUGLAS Georgios | 71 |
87 | SOULA Guillaume | 68 |
89 | SAYAR Mustafa | 64 |