Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Flynn
1
67 kgGovekar
2
73 kgRiccitello
3
55 kgFroidevaux
4
71 kgBaudin
5
64 kgBárta
6
79 kgKelemen
7
70 kgFortin
8
78 kgRudyk
9
76 kgGrosu
11
68 kgVan Petegem
12
67 kgPotočki
13
58 kgMarcellusi
14
62 kgStosz
16
70 kgTagliani
17
70 kgvan Bekkum
18
62 kgZanoncello
19
64 kgMora
20
70 kgVoisard
21
56 kgFinkšt
22
70 kgNolde
23
79 kgSimmons
24
68 kg
1
67 kgGovekar
2
73 kgRiccitello
3
55 kgFroidevaux
4
71 kgBaudin
5
64 kgBárta
6
79 kgKelemen
7
70 kgFortin
8
78 kgRudyk
9
76 kgGrosu
11
68 kgVan Petegem
12
67 kgPotočki
13
58 kgMarcellusi
14
62 kgStosz
16
70 kgTagliani
17
70 kgvan Bekkum
18
62 kgZanoncello
19
64 kgMora
20
70 kgVoisard
21
56 kgFinkšt
22
70 kgNolde
23
79 kgSimmons
24
68 kg
Weight (KG) →
Result →
79
55
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | FLYNN Sean | 67 |
2 | GOVEKAR Matevž | 73 |
3 | RICCITELLO Matthew | 55 |
4 | FROIDEVAUX Robin | 71 |
5 | BAUDIN Alex | 64 |
6 | BÁRTA Tomáš | 79 |
7 | KELEMEN Petr | 70 |
8 | FORTIN Filippo | 78 |
9 | RUDYK Bartosz | 76 |
11 | GROSU Eduard-Michael | 68 |
12 | VAN PETEGEM Axandre | 67 |
13 | POTOČKI Viktor | 58 |
14 | MARCELLUSI Martin | 62 |
16 | STOSZ Patryk | 70 |
17 | TAGLIANI Filippo | 70 |
18 | VAN BEKKUM Darren | 62 |
19 | ZANONCELLO Enrico | 64 |
20 | MORA Sebastián | 70 |
21 | VOISARD Yannis | 56 |
22 | FINKŠT Tilen | 70 |
23 | NOLDE Tobias | 79 |
24 | SIMMONS Colby | 68 |