Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Baudin
1
64 kgFlynn
2
67 kgGovekar
3
73 kgRiccitello
4
55 kgFroidevaux
5
71 kgLópez
7
55 kgBárta
8
79 kgVoisard
9
56 kgKelemen
10
70 kgFortin
11
78 kgRudyk
12
76 kgEngelhardt
13
68 kgRyan
14
56 kgGrosu
15
68 kgCharrin
17
67 kgVan Petegem
18
67 kgLopez
19
56 kgMarcellusi
20
62 kgPotočki
21
58 kgStaune-Mittet
22
67 kgStosz
23
70 kgKrawczyk
24
79 kg
1
64 kgFlynn
2
67 kgGovekar
3
73 kgRiccitello
4
55 kgFroidevaux
5
71 kgLópez
7
55 kgBárta
8
79 kgVoisard
9
56 kgKelemen
10
70 kgFortin
11
78 kgRudyk
12
76 kgEngelhardt
13
68 kgRyan
14
56 kgGrosu
15
68 kgCharrin
17
67 kgVan Petegem
18
67 kgLopez
19
56 kgMarcellusi
20
62 kgPotočki
21
58 kgStaune-Mittet
22
67 kgStosz
23
70 kgKrawczyk
24
79 kg
Weight (KG) →
Result →
79
55
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | BAUDIN Alex | 64 |
2 | FLYNN Sean | 67 |
3 | GOVEKAR Matevž | 73 |
4 | RICCITELLO Matthew | 55 |
5 | FROIDEVAUX Robin | 71 |
7 | LÓPEZ Harold Martín | 55 |
8 | BÁRTA Tomáš | 79 |
9 | VOISARD Yannis | 56 |
10 | KELEMEN Petr | 70 |
11 | FORTIN Filippo | 78 |
12 | RUDYK Bartosz | 76 |
13 | ENGELHARDT Felix | 68 |
14 | RYAN Archie | 56 |
15 | GROSU Eduard-Michael | 68 |
17 | CHARRIN Aloïs | 67 |
18 | VAN PETEGEM Axandre | 67 |
19 | LOPEZ Juan Carlos | 56 |
20 | MARCELLUSI Martin | 62 |
21 | POTOČKI Viktor | 58 |
22 | STAUNE-MITTET Johannes | 67 |
23 | STOSZ Patryk | 70 |
24 | KRAWCZYK Szymon | 79 |