Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Kogut
1
77 kgMartin
2
68 kgShmidt
3
76 kgKretschy
5
63 kgGruel
6
70 kgStosz
7
70 kgvan Bekkum
9
62 kgPersico
11
65 kgBelletta
12
73 kgLaptev
14
68 kgFinkšt
17
70 kgHatherly
18
65 kgRäim
19
69 kgPotočki
20
58 kgNolde
22
79 kgKelemen
24
78 kgŤoupalík
25
65 kgMüller
30
64 kgGebhardt
31
75 kgRomele
32
71 kg
1
77 kgMartin
2
68 kgShmidt
3
76 kgKretschy
5
63 kgGruel
6
70 kgStosz
7
70 kgvan Bekkum
9
62 kgPersico
11
65 kgBelletta
12
73 kgLaptev
14
68 kgFinkšt
17
70 kgHatherly
18
65 kgRäim
19
69 kgPotočki
20
58 kgNolde
22
79 kgKelemen
24
78 kgŤoupalík
25
65 kgMüller
30
64 kgGebhardt
31
75 kgRomele
32
71 kg
Weight (KG) →
Result →
79
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | KOGUT Oded | 77 |
2 | MARTIN David | 68 |
3 | SHMIDT Artem | 76 |
5 | KRETSCHY Moritz | 63 |
6 | GRUEL Thibaud | 70 |
7 | STOSZ Patryk | 70 |
9 | VAN BEKKUM Darren | 62 |
11 | PERSICO Davide | 65 |
12 | BELLETTA Dario Igor | 73 |
14 | LAPTEV Savelii | 68 |
17 | FINKŠT Tilen | 70 |
18 | HATHERLY Alan | 65 |
19 | RÄIM Mihkel | 69 |
20 | POTOČKI Viktor | 58 |
22 | NOLDE Tobias | 79 |
24 | KELEMEN Pavel | 78 |
25 | ŤOUPALÍK Adam | 65 |
30 | MÜLLER Tobias | 64 |
31 | GEBHARDT Philipp | 75 |
32 | ROMELE Alessandro | 71 |