Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 71
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Raccagni Noviero
4
75 kgPedersen
5
74 kgIsidore
6
67 kgDonnenwirth
9
63 kgRudyk
10
76 kgFrątczak
11
70 kgSavino
13
70 kgFinkšt
14
70 kgKubiš
15
70 kgPeák
18
74 kgJørgensen
19
68 kgHulsmans
20
70 kgPotočki
21
58 kgStolić
22
73 kgHarteel
23
66 kgGrixa
24
62 kgJohn
26
65 kgMüller
28
64 kgvan Bekkum
30
62 kgReutimann
32
71 kg
4
75 kgPedersen
5
74 kgIsidore
6
67 kgDonnenwirth
9
63 kgRudyk
10
76 kgFrątczak
11
70 kgSavino
13
70 kgFinkšt
14
70 kgKubiš
15
70 kgPeák
18
74 kgJørgensen
19
68 kgHulsmans
20
70 kgPotočki
21
58 kgStolić
22
73 kgHarteel
23
66 kgGrixa
24
62 kgJohn
26
65 kgMüller
28
64 kgvan Bekkum
30
62 kgReutimann
32
71 kg
Weight (KG) →
Result →
76
58
4
32
# | Rider | Weight (KG) |
---|---|---|
4 | RACCAGNI NOVIERO Andrea | 75 |
5 | PEDERSEN Rasmus Søjberg | 74 |
6 | ISIDORE Noa | 67 |
9 | DONNENWIRTH Tom | 63 |
10 | RUDYK Bartosz | 76 |
11 | FRĄTCZAK Radosław | 70 |
13 | SAVINO Federico | 70 |
14 | FINKŠT Tilen | 70 |
15 | KUBIŠ Lukáš | 70 |
18 | PEÁK Barnabás | 74 |
19 | JØRGENSEN Adam Holm | 68 |
20 | HULSMANS Senne | 70 |
21 | POTOČKI Viktor | 58 |
22 | STOLIĆ Mihajlo | 73 |
23 | HARTEEL Jelle | 66 |
24 | GRIXA Jarno | 62 |
26 | JOHN Vincent | 65 |
28 | MÜLLER Tobias | 64 |
30 | VAN BEKKUM Darren | 62 |
32 | REUTIMANN Matthias | 71 |