Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 46
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Chiappucci
1
67 kgBruyneel
2
71 kgUgrumov
3
58 kgRoche
7
74 kgDelgado
23
64 kgLlach
26
58 kgBölts
28
73 kgMurguialday
32
58 kgZarrabeitia
36
63 kgde Vries
38
75 kgBaguet
50
67 kgBugno
53
68 kgAlonso
61
70 kgRominger
63
65 kgStephens
64
65 kgMujika
65
73 kgWinnen
68
60 kgHundertmarck
74
72 kgElliott
80
76 kgWauters
96
73 kgWalton
111
68 kg
1
67 kgBruyneel
2
71 kgUgrumov
3
58 kgRoche
7
74 kgDelgado
23
64 kgLlach
26
58 kgBölts
28
73 kgMurguialday
32
58 kgZarrabeitia
36
63 kgde Vries
38
75 kgBaguet
50
67 kgBugno
53
68 kgAlonso
61
70 kgRominger
63
65 kgStephens
64
65 kgMujika
65
73 kgWinnen
68
60 kgHundertmarck
74
72 kgElliott
80
76 kgWauters
96
73 kgWalton
111
68 kg
Weight (KG) →
Result →
76
58
1
111
# | Rider | Weight (KG) |
---|---|---|
1 | CHIAPPUCCI Claudio | 67 |
2 | BRUYNEEL Johan | 71 |
3 | UGRUMOV Piotr | 58 |
7 | ROCHE Stephen | 74 |
23 | DELGADO Pedro | 64 |
26 | LLACH Joaquin | 58 |
28 | BÖLTS Udo | 73 |
32 | MURGUIALDAY Javier | 58 |
36 | ZARRABEITIA Mikel | 63 |
38 | DE VRIES Gerrit | 75 |
50 | BAGUET Serge | 67 |
53 | BUGNO Gianni | 68 |
61 | ALONSO Marino | 70 |
63 | ROMINGER Tony | 65 |
64 | STEPHENS Neil | 65 |
65 | MUJIKA Jokin | 73 |
68 | WINNEN Peter | 60 |
74 | HUNDERTMARCK Kai | 72 |
80 | ELLIOTT Malcolm | 76 |
96 | WAUTERS Marc | 73 |
111 | WALTON Brian | 68 |