Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Elli
1
71 kgJalabert
2
66 kgCasagrande
3
64 kgZberg
4
72 kgHeras
6
59 kgNoè
7
65 kgBelli
8
64 kgMeier
10
69 kgSavoldelli
11
72 kgGarmendia
12
68 kgOsa
13
65 kgHervé
14
62 kgFrigo
16
66 kgGonzález de Galdeano
18
73 kgBölts
19
73 kgZülle
20
72 kgTonkov
22
70 kgBerzin
23
64 kgPiepoli
24
54 kgPantani
26
58 kgGotti
27
65 kgBugno
30
68 kg
1
71 kgJalabert
2
66 kgCasagrande
3
64 kgZberg
4
72 kgHeras
6
59 kgNoè
7
65 kgBelli
8
64 kgMeier
10
69 kgSavoldelli
11
72 kgGarmendia
12
68 kgOsa
13
65 kgHervé
14
62 kgFrigo
16
66 kgGonzález de Galdeano
18
73 kgBölts
19
73 kgZülle
20
72 kgTonkov
22
70 kgBerzin
23
64 kgPiepoli
24
54 kgPantani
26
58 kgGotti
27
65 kgBugno
30
68 kg
Weight (KG) →
Result →
73
54
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | ELLI Alberto | 71 |
2 | JALABERT Laurent | 66 |
3 | CASAGRANDE Francesco | 64 |
4 | ZBERG Beat | 72 |
6 | HERAS Roberto | 59 |
7 | NOÈ Andrea | 65 |
8 | BELLI Wladimir | 64 |
10 | MEIER Armin | 69 |
11 | SAVOLDELLI Paolo | 72 |
12 | GARMENDIA Aitor | 68 |
13 | OSA Unai | 65 |
14 | HERVÉ Pascal | 62 |
16 | FRIGO Dario | 66 |
18 | GONZÁLEZ DE GALDEANO Igor | 73 |
19 | BÖLTS Udo | 73 |
20 | ZÜLLE Alex | 72 |
22 | TONKOV Pavel | 70 |
23 | BERZIN Evgeni | 64 |
24 | PIEPOLI Leonardo | 54 |
26 | PANTANI Marco | 58 |
27 | GOTTI Ivan | 65 |
30 | BUGNO Gianni | 68 |