Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Sánchez
1
73 kgSánchez
2
65 kgPineau
3
65 kgKnees
4
81 kgKolobnev
5
64 kgRodríguez
6
58 kgRogers
7
74 kgNibali
8
65 kgDevenyns
9
65 kgEvans
10
64 kgFernández
11
61 kgIzagirre
12
66 kgHorner
13
70 kgCunego
14
58 kgMori
15
62 kgContador
16
61 kgHernández
17
64 kgColom
18
71 kgPérez
19
66 kgCasar
20
63 kg
1
73 kgSánchez
2
65 kgPineau
3
65 kgKnees
4
81 kgKolobnev
5
64 kgRodríguez
6
58 kgRogers
7
74 kgNibali
8
65 kgDevenyns
9
65 kgEvans
10
64 kgFernández
11
61 kgIzagirre
12
66 kgHorner
13
70 kgCunego
14
58 kgMori
15
62 kgContador
16
61 kgHernández
17
64 kgColom
18
71 kgPérez
19
66 kgCasar
20
63 kg
Weight (KG) →
Result →
81
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | SÁNCHEZ Luis León | 73 |
2 | SÁNCHEZ Samuel | 65 |
3 | PINEAU Jérôme | 65 |
4 | KNEES Christian | 81 |
5 | KOLOBNEV Alexandr | 64 |
6 | RODRÍGUEZ Joaquim | 58 |
7 | ROGERS Michael | 74 |
8 | NIBALI Vincenzo | 65 |
9 | DEVENYNS Dries | 65 |
10 | EVANS Cadel | 64 |
11 | FERNÁNDEZ Bingen | 61 |
12 | IZAGIRRE Gorka | 66 |
13 | HORNER Chris | 70 |
14 | CUNEGO Damiano | 58 |
15 | MORI Manuele | 62 |
16 | CONTADOR Alberto | 61 |
17 | HERNÁNDEZ Aitor | 64 |
18 | COLOM Antonio | 71 |
19 | PÉREZ Alan | 66 |
20 | CASAR Sandy | 63 |