Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Valverde
1
61 kgFreire
2
63 kgHesjedal
3
73 kgKolobnev
4
64 kgLe Mével
5
61 kgGavazzi
6
65 kgAlbasini
7
65 kgUrán
8
63 kgSánchez
9
65 kgVan den Broeck
10
69 kgKoren
11
72 kgMartin
12
59 kgZubeldia
13
68 kgRodríguez
14
58 kgCunego
15
58 kgIntxausti
16
61 kgMartens
17
69 kgCasar
18
63 kgHermans
19
72 kgLoosli
20
71 kgSchleck
21
65 kgBotcharov
22
54 kgPeraud
23
62 kg
1
61 kgFreire
2
63 kgHesjedal
3
73 kgKolobnev
4
64 kgLe Mével
5
61 kgGavazzi
6
65 kgAlbasini
7
65 kgUrán
8
63 kgSánchez
9
65 kgVan den Broeck
10
69 kgKoren
11
72 kgMartin
12
59 kgZubeldia
13
68 kgRodríguez
14
58 kgCunego
15
58 kgIntxausti
16
61 kgMartens
17
69 kgCasar
18
63 kgHermans
19
72 kgLoosli
20
71 kgSchleck
21
65 kgBotcharov
22
54 kgPeraud
23
62 kg
Weight (KG) →
Result →
73
54
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VALVERDE Alejandro | 61 |
2 | FREIRE Óscar | 63 |
3 | HESJEDAL Ryder | 73 |
4 | KOLOBNEV Alexandr | 64 |
5 | LE MÉVEL Christophe | 61 |
6 | GAVAZZI Francesco | 65 |
7 | ALBASINI Michael | 65 |
8 | URÁN Rigoberto | 63 |
9 | SÁNCHEZ Samuel | 65 |
10 | VAN DEN BROECK Jurgen | 69 |
11 | KOREN Kristijan | 72 |
12 | MARTIN Dan | 59 |
13 | ZUBELDIA Haimar | 68 |
14 | RODRÍGUEZ Joaquim | 58 |
15 | CUNEGO Damiano | 58 |
16 | INTXAUSTI Beñat | 61 |
17 | MARTENS Paul | 69 |
18 | CASAR Sandy | 63 |
19 | HERMANS Ben | 72 |
20 | LOOSLI David | 71 |
21 | SCHLECK Fränk | 65 |
22 | BOTCHAROV Alexandre | 54 |
23 | PERAUD Jean-Christophe | 62 |