Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Rabuñal
1
65 kgBenítez
2
66 kgTxurruka
3
58 kgAlbasini
4
65 kgRogers
5
74 kgMayoz
6
62 kgMeier
7
61 kgSchleck
8
65 kgMartínez
9
70 kgVorganov
10
65 kgGesink
11
70 kgMartínez
12
74 kgKlimov
13
69 kgCarrasco
14
56 kgPedersen
15
62 kgGómez Marchante
16
60 kgHorner
17
70 kgGerdemann
18
71 kgIntxausti
19
61 kgMandri
20
66 kgGarcía Dapena
21
73 kgMalacarne
22
63 kgDi Grégorio
23
67 kg
1
65 kgBenítez
2
66 kgTxurruka
3
58 kgAlbasini
4
65 kgRogers
5
74 kgMayoz
6
62 kgMeier
7
61 kgSchleck
8
65 kgMartínez
9
70 kgVorganov
10
65 kgGesink
11
70 kgMartínez
12
74 kgKlimov
13
69 kgCarrasco
14
56 kgPedersen
15
62 kgGómez Marchante
16
60 kgHorner
17
70 kgGerdemann
18
71 kgIntxausti
19
61 kgMandri
20
66 kgGarcía Dapena
21
73 kgMalacarne
22
63 kgDi Grégorio
23
67 kg
Weight (KG) →
Result →
74
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | RABUÑAL Gonzalo | 65 |
2 | BENÍTEZ José Alberto | 66 |
3 | TXURRUKA Amets | 58 |
4 | ALBASINI Michael | 65 |
5 | ROGERS Michael | 74 |
6 | MAYOZ Iban | 62 |
7 | MEIER Christian | 61 |
8 | SCHLECK Fränk | 65 |
9 | MARTÍNEZ Egoi | 70 |
10 | VORGANOV Eduard | 65 |
11 | GESINK Robert | 70 |
12 | MARTÍNEZ Serafín | 74 |
13 | KLIMOV Sergey | 69 |
14 | CARRASCO Sergio | 56 |
15 | PEDERSEN Martin | 62 |
16 | GÓMEZ MARCHANTE José Ángel | 60 |
17 | HORNER Chris | 70 |
18 | GERDEMANN Linus | 71 |
19 | INTXAUSTI Beñat | 61 |
20 | MANDRI René | 66 |
21 | GARCÍA DAPENA David | 73 |
22 | MALACARNE Davide | 63 |
23 | DI GRÉGORIO Rémy | 67 |