Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Iglinskiy
1
67 kgValls
2
64 kgMoinard
3
69 kgGarate
4
62 kgPerget
5
64 kgKiryienka
6
69 kgSánchez
7
65 kgHorner
8
70 kgTankink
9
71 kgCataldo
10
64 kgRodríguez
11
58 kgDuarte
12
55 kgRovny
13
62 kgTxurruka
14
58 kgSchleck
15
65 kgVerdugo
16
71 kgBarredo
17
61 kgFuglsang
18
67 kgKlöden
19
63 kgArdila
20
58 kgSeeldraeyers
21
60 kgVoigt
22
76 kg
1
67 kgValls
2
64 kgMoinard
3
69 kgGarate
4
62 kgPerget
5
64 kgKiryienka
6
69 kgSánchez
7
65 kgHorner
8
70 kgTankink
9
71 kgCataldo
10
64 kgRodríguez
11
58 kgDuarte
12
55 kgRovny
13
62 kgTxurruka
14
58 kgSchleck
15
65 kgVerdugo
16
71 kgBarredo
17
61 kgFuglsang
18
67 kgKlöden
19
63 kgArdila
20
58 kgSeeldraeyers
21
60 kgVoigt
22
76 kg
Weight (KG) →
Result →
76
55
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | IGLINSKIY Maxim | 67 |
2 | VALLS Rafael | 64 |
3 | MOINARD Amaël | 69 |
4 | GARATE Juan Manuel | 62 |
5 | PERGET Mathieu | 64 |
6 | KIRYIENKA Vasil | 69 |
7 | SÁNCHEZ Samuel | 65 |
8 | HORNER Chris | 70 |
9 | TANKINK Bram | 71 |
10 | CATALDO Dario | 64 |
11 | RODRÍGUEZ Joaquim | 58 |
12 | DUARTE Fabio | 55 |
13 | ROVNY Ivan | 62 |
14 | TXURRUKA Amets | 58 |
15 | SCHLECK Fränk | 65 |
16 | VERDUGO Gorka | 71 |
17 | BARREDO Carlos | 61 |
18 | FUGLSANG Jakob | 67 |
19 | KLÖDEN Andreas | 63 |
20 | ARDILA Mauricio Alberto | 58 |
21 | SEELDRAEYERS Kevin | 60 |
22 | VOIGT Jens | 76 |