Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Klöden
1
63 kgRodríguez
2
58 kgHorner
3
70 kgKiryienka
4
69 kgSánchez
5
65 kgHesjedal
6
73 kgSchleck
7
68 kgSørensen
8
64 kgLópez
9
68 kgCunego
10
58 kgTondo
11
68 kgVan den Broeck
12
69 kgGesink
13
70 kgSchleck
14
65 kgDi Luca
15
61 kgDuarte
16
55 kgIntxausti
17
61 kgKolobnev
18
64 kgPoels
19
66 kgVinokourov
20
68 kgVerdugo
21
71 kgUrán
22
63 kg
1
63 kgRodríguez
2
58 kgHorner
3
70 kgKiryienka
4
69 kgSánchez
5
65 kgHesjedal
6
73 kgSchleck
7
68 kgSørensen
8
64 kgLópez
9
68 kgCunego
10
58 kgTondo
11
68 kgVan den Broeck
12
69 kgGesink
13
70 kgSchleck
14
65 kgDi Luca
15
61 kgDuarte
16
55 kgIntxausti
17
61 kgKolobnev
18
64 kgPoels
19
66 kgVinokourov
20
68 kgVerdugo
21
71 kgUrán
22
63 kg
Weight (KG) →
Result →
73
55
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | KLÖDEN Andreas | 63 |
2 | RODRÍGUEZ Joaquim | 58 |
3 | HORNER Chris | 70 |
4 | KIRYIENKA Vasil | 69 |
5 | SÁNCHEZ Samuel | 65 |
6 | HESJEDAL Ryder | 73 |
7 | SCHLECK Andy | 68 |
8 | SØRENSEN Chris Anker | 64 |
9 | LÓPEZ David | 68 |
10 | CUNEGO Damiano | 58 |
11 | TONDO Xavier | 68 |
12 | VAN DEN BROECK Jurgen | 69 |
13 | GESINK Robert | 70 |
14 | SCHLECK Fränk | 65 |
15 | DI LUCA Danilo | 61 |
16 | DUARTE Fabio | 55 |
17 | INTXAUSTI Beñat | 61 |
18 | KOLOBNEV Alexandr | 64 |
19 | POELS Wout | 66 |
20 | VINOKOUROV Alexandre | 68 |
21 | VERDUGO Gorka | 71 |
22 | URÁN Rigoberto | 63 |