Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Txurruka
1
58 kgDidier
2
68 kgHernández Blázquez
3
58 kgCardoso
4
56 kgHenao
5
61 kgHerrada
6
65 kgFraile
7
72 kgCobo
8
62 kgMalori
9
68 kgBetancur
10
60 kgCosta
11
69 kgLanda
12
61 kgBardet
13
65 kgVoigt
14
76 kgZaugg
15
58 kgQuintana
16
58 kgNavarro
17
60 kgCaruso
18
60 kgRogers
19
74 kgCastroviejo
20
62 kgMeier
21
61 kgPiedra
22
61 kg
1
58 kgDidier
2
68 kgHernández Blázquez
3
58 kgCardoso
4
56 kgHenao
5
61 kgHerrada
6
65 kgFraile
7
72 kgCobo
8
62 kgMalori
9
68 kgBetancur
10
60 kgCosta
11
69 kgLanda
12
61 kgBardet
13
65 kgVoigt
14
76 kgZaugg
15
58 kgQuintana
16
58 kgNavarro
17
60 kgCaruso
18
60 kgRogers
19
74 kgCastroviejo
20
62 kgMeier
21
61 kgPiedra
22
61 kg
Weight (KG) →
Result →
76
56
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | TXURRUKA Amets | 58 |
2 | DIDIER Laurent | 68 |
3 | HERNÁNDEZ BLÁZQUEZ Jesús | 58 |
4 | CARDOSO André | 56 |
5 | HENAO Sergio | 61 |
6 | HERRADA José | 65 |
7 | FRAILE Omar | 72 |
8 | COBO Juan José | 62 |
9 | MALORI Adriano | 68 |
10 | BETANCUR Carlos | 60 |
11 | COSTA Rui | 69 |
12 | LANDA Mikel | 61 |
13 | BARDET Romain | 65 |
14 | VOIGT Jens | 76 |
15 | ZAUGG Oliver | 58 |
16 | QUINTANA Nairo | 58 |
17 | NAVARRO Daniel | 60 |
18 | CARUSO Giampaolo | 60 |
19 | ROGERS Michael | 74 |
20 | CASTROVIEJO Jonathan | 62 |
21 | MEIER Christian | 61 |
22 | PIEDRA Antonio | 61 |