Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Villella
1
66 kgBakelants
2
67 kgMontaguti
3
65 kgIzagirre
4
66 kgSicard
5
63 kgMartin
6
75 kgMalacarne
7
63 kgMonfort
8
66 kgContador
9
61 kgHerrada
10
65 kgValverde
11
61 kgFerrari
12
64 kgDupont
13
57 kgKwiatkowski
14
68 kgPeraud
15
62 kgIntxausti
16
61 kgJungels
17
70 kg
1
66 kgBakelants
2
67 kgMontaguti
3
65 kgIzagirre
4
66 kgSicard
5
63 kgMartin
6
75 kgMalacarne
7
63 kgMonfort
8
66 kgContador
9
61 kgHerrada
10
65 kgValverde
11
61 kgFerrari
12
64 kgDupont
13
57 kgKwiatkowski
14
68 kgPeraud
15
62 kgIntxausti
16
61 kgJungels
17
70 kg
Weight (KG) →
Result →
75
57
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | VILLELLA Davide | 66 |
2 | BAKELANTS Jan | 67 |
3 | MONTAGUTI Matteo | 65 |
4 | IZAGIRRE Gorka | 66 |
5 | SICARD Romain | 63 |
6 | MARTIN Tony | 75 |
7 | MALACARNE Davide | 63 |
8 | MONFORT Maxime | 66 |
9 | CONTADOR Alberto | 61 |
10 | HERRADA José | 65 |
11 | VALVERDE Alejandro | 61 |
12 | FERRARI Fabricio | 64 |
13 | DUPONT Hubert | 57 |
14 | KWIATKOWSKI Michał | 68 |
15 | PERAUD Jean-Christophe | 62 |
16 | INTXAUSTI Beñat | 61 |
17 | JUNGELS Bob | 70 |