Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Matthews
1
72 kgFelline
2
68 kgKwiatkowski
3
68 kgGallopin
4
69 kgReza
5
71 kgSimon
6
65 kgZakarin
7
67 kgAgnoli
8
72 kgGilbert
9
75 kgBilbao
10
60 kgMoreno
11
59 kgVakoč
12
68 kgMeersman
13
63 kgAcevedo
14
63 kgTanner
15
70 kgVuillermoz
16
60 kgMartin
17
75 kgIzagirre
18
60 kgSánchez
19
73 kgImpey
20
72 kg
1
72 kgFelline
2
68 kgKwiatkowski
3
68 kgGallopin
4
69 kgReza
5
71 kgSimon
6
65 kgZakarin
7
67 kgAgnoli
8
72 kgGilbert
9
75 kgBilbao
10
60 kgMoreno
11
59 kgVakoč
12
68 kgMeersman
13
63 kgAcevedo
14
63 kgTanner
15
70 kgVuillermoz
16
60 kgMartin
17
75 kgIzagirre
18
60 kgSánchez
19
73 kgImpey
20
72 kg
Weight (KG) →
Result →
75
59
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | MATTHEWS Michael | 72 |
2 | FELLINE Fabio | 68 |
3 | KWIATKOWSKI Michał | 68 |
4 | GALLOPIN Tony | 69 |
5 | REZA Kévin | 71 |
6 | SIMON Julien | 65 |
7 | ZAKARIN Ilnur | 67 |
8 | AGNOLI Valerio | 72 |
9 | GILBERT Philippe | 75 |
10 | BILBAO Pello | 60 |
11 | MORENO Daniel | 59 |
12 | VAKOČ Petr | 68 |
13 | MEERSMAN Gianni | 63 |
14 | ACEVEDO Janier | 63 |
15 | TANNER David | 70 |
16 | VUILLERMOZ Alexis | 60 |
17 | MARTIN Tony | 75 |
18 | IZAGIRRE Ion | 60 |
19 | SÁNCHEZ Luis León | 73 |
20 | IMPEY Daryl | 72 |