Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Lastra
1
64 kgEdet
2
60 kgCataldo
3
64 kgVillella
4
66 kgWyss
5
63 kgContador
6
61 kgDe Plus
7
67 kgYates
8
58 kgMaté
9
68 kgVerona
10
68 kgBakelants
11
67 kgMoreno
12
59 kgMontaguti
13
65 kgKelderman
14
65 kgHenao
15
61 kgBrambilla
16
57 kgPauwels
17
65 kgTxurruka
18
58 kgPaulinho
19
64 kg
1
64 kgEdet
2
60 kgCataldo
3
64 kgVillella
4
66 kgWyss
5
63 kgContador
6
61 kgDe Plus
7
67 kgYates
8
58 kgMaté
9
68 kgVerona
10
68 kgBakelants
11
67 kgMoreno
12
59 kgMontaguti
13
65 kgKelderman
14
65 kgHenao
15
61 kgBrambilla
16
57 kgPauwels
17
65 kgTxurruka
18
58 kgPaulinho
19
64 kg
Weight (KG) →
Result →
68
57
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | LASTRA Jonathan | 64 |
2 | EDET Nicolas | 60 |
3 | CATALDO Dario | 64 |
4 | VILLELLA Davide | 66 |
5 | WYSS Marcel | 63 |
6 | CONTADOR Alberto | 61 |
7 | DE PLUS Laurens | 67 |
8 | YATES Simon | 58 |
9 | MATÉ Luis Ángel | 68 |
10 | VERONA Carlos | 68 |
11 | BAKELANTS Jan | 67 |
12 | MORENO Daniel | 59 |
13 | MONTAGUTI Matteo | 65 |
14 | KELDERMAN Wilco | 65 |
15 | HENAO Sergio | 61 |
16 | BRAMBILLA Gianluca | 57 |
17 | PAUWELS Serge | 65 |
18 | TXURRUKA Amets | 58 |
19 | PAULINHO Sérgio Miguel | 64 |